000006

Coding-bootcamps.com

Introduction to C ," ;
Programming Language " ','

~__o

By Tom Brownlee C o d I n g

from Coding Bootcamps B O OtC dlim p S

https://coding-bootcamps.com/
https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

Session 4
Pointers and Dynamic Allocation

RECAP-Previous Session

3- Fundamental Data Types and Qualifiers
Constants and Strings

Storage Classes

Scope and Block Structure

Scope and Data Hiding

Data Initialization

Examples, as promised last time.

OUTLINE

4- Pointers and Dynamic Allocation
User of Pointers

Pointer and Address Arithmetic
Dynamic Storage Allocation

sizeof Operator

Double Indirection

POINTERS AND DYNAMIC ALLOCATION

Use of Pointers

Pointers are used (in the C language) in a few different ways:
* To create dynamic data structures.
* To pass and handle variable parameters passed to functions.
o This is called ‘passing by reference’ as opposed to ‘passing by value.’
* To access information stored in arrays. (Especially if you work with links).
* To reduce certain sources of overhead, resulting in faster code.

One way to help understand pointers is to describe them as values and variables that refer to other
variables. Suppose you have a variable “int foo;” Memory is allocated for it and that location in
memory is referred to by the name “foo.” A pointer is a variable whose value refers to some such
variable.

On 64 bit architectures pointers take up 8 bytes of memory. On 32 bit architectures, they take up 4
bytes. For large, complex data types it's often much faster to copy one 8-byte value and pass it to a
function than it is to pass a whole new copy of that data, and frequently it’s more useful too.

POINTERS AND DYNAMIC ALLOCATION

Pointer and Address

To declare a pointer you hawve to put an * in front of its name. A pointer can be typed or untyped. (A typed
pointer points to a particular variable type such as an integer. An untyped pointer points to any data type).
See the following example of a declaration of a typed pointer and an untyped pointer:

#include<stdio.h>

int main()

{

int *ptr_A; /S* A typed pointer */
void *ptr_B; S*¥ A untyped pointer */
return e;

Put the address of an integer into a “pointer to an integer”™ by using the & operator (address operator)
in front of the integer, to get the integer’'s address.

Let’'s take a look at an example:

#include<stdio.h>

int main()

{
int
int

N =

return ;

POINTERS AND DYNAMIC ALLOCATION

Pointer and Address

C program to show pointer arithmetic

Output

Address of int var = 2293300
Address of char_var = 2293299

1| #include<stdio.h> Address of float var = 2203292
2 #include<conio.h> -
3
a4 void main() { . L.
5 int int var = 1@, *int ptr; After increment address in int ptr = 2293304
_ _P _
) char char_wvar = "A', *char_ptr; . .
7 float float val = 4.65, *float ptr; After increment address in char ptr = 2293300
8 . .
9 /* Initialize pointers */ After increment address in float ptr = 2293296
10 int _ptr = &int_ war;
11 char_ptr = &char_wvar;
%; float_ptr = &float _val; After addition address in int _ptr = 2293312
14 printf("Address of int_var = %u\n", int_ptr); After addition address in char ptr = 22933082
15 printf("Address of char_wvar = Zu\n", char_ ptr); -
e printf(“Address of float var = X¥u\n\n", float ptr); After addition address in float ptr = 2293304
18 /* Incrementing pointers */
19 int ptr++;
20 char_ptr++;
21 float ptr++;
22 printf("After increment address in int_ptr = %u\n", int_ptr);
23 printf("After increment address in char_ptr = %u\n", char_ptr);
24 printf("After increment address in float ptr = %u\n\n", float ptr)
25
26 /* Adding 2 to pointers */
27 int_ptr = int_ptr + 2;
28 char_ptr = char_ptr + 2;
29 float ptr = float ptr + 2;
30
31 printf("After addition address in int_ptr = %u\n", int_ptr);
32 printf("After addition address in char_ptr = %u\n", char_ptr);
33 printf("After addition address in float_ ptr = Zu\n\n", float ptr);
34
35 getch();
36 return @;
37 1

Pointer Dereferencing

So pointers refer to locations in memory. Fine, how do we get to what’s in that spot in

memory!?
Dereferencing!

Putting a * before the name of a variable when you use it “de-pointer-ifies” or

dereferences the value.

Examples back on my scratch sheet.

Stack vs Heap memory

Stack memory Heap memory
 Allocated by variable declarations + Allocated dynamically at runtime
« Memory “frames” are created * Accessed by pointers
matching scopes in your program. * “Borrowed” from the operating
* Pushed and popped off a stack system (must be freed/returned
structure (last in, first out) manually after you’re done with it)

« Managed automatically by C runtime. « Managed by the programmer.

POINTERS AND DYNAMIC ALLOCATION

sizeof Operator

Sizeof is a much used in the C programming language. It is a compile time unary operator which can be
used to compute the size of its operand. The result of sizeof is of unsigned integral type which is usually
denoted by size_t. sizeof can be applied to any data-type, including primitive types such as integer and
floating-point types, pointer types, or compound datatypes such as Structure, union etc.

POINTERS AND DYNAMIC ALLOCATION

Dynamic Storage Allocation

In C, dynamic memory is allocated from the heap using some standard library functions. The two
key dynamic memory functions are malloc() and free().
The malloc() function takes a single parameter, which is the size of the requested memory area in
bytes. It returns a pointer to the allocated memory. If the allocation fails, it returns NULL. The
prototype for the standard library function is like this:

void *malloc(size_t size);

The free() function takes the pointer returned by malloc() and de-allocates the memory. No
indication of success or failure is returned. The function prototype is like this:
void free(void *pointer);

If memory acquired using malloc(), calloc(), or other such functions is not freed, the memory is
lost upon the program’s conclusion. This is called a memory leak. Specialized tools like Valgrind
exist to detect memory leaks in software.

Example provided on my scratch sheet.

POINTERS AND DYNAMIC ALLOCATION

Double Indirection

Program:

#include<stdio.h>
#include<conio.h>
void main()
{
int i =58;
int **ptril;
int *ptr2;
clrscr();
ptr2 = &i;
ptrl = &ptr2;
printf("\nThe value of **ptrl : %d",**ptrl);
printf("\nThe value of *ptr2 : %d",*ptr2);
getch();

Output:

The value of **ptrl : 5@
The value of *ptr2 : 5@

POINTERS AND DYNAMIC ALLOCATION

Double Indirection

COOuTtpurct
The wvalue of *Fptrdld : 5
The wvalue of * ptr2 : 5e

Explanation :

5 Pt | W g |

| SO |<:| 00O |<::| 3000]

lelele: SO0 A4 OO0
1. Variable I’ is initialized to 50.
2.0 is stored at Memory Locatiomn 2000.

3. Pointer VWariable ‘ptr2’ stores address of variable “i'.

*ptr2 will prinmt [WValue Stored at Address 2ese] i.e 58

. Simiilarhy ‘ptr1’ is also a pointer variable which stores the address of Pointer
variable [i.e ptr2 stores address of integer wariable wwhile ptril1 stores
address of another pointer variable].

5. So

APl is used to access actual wvalue .

A _Pointers and Dynamic Allocation - PowerPoint l

SUMMARY

NEXT SESSION

5- Macros
* Functions vs. Inlining
* Purpose of Macros
* Use of Macros

* Making Code More Readable

* Auto Adjustment of Compile Time

Values

* Conditional Compilation

* Making Code Portable

* Simplifying Complex Access Calculations
* Using Macros to Help Write Portable
Programs
* When to Use a Macro instead of a Function
* Using Macros for Debugging

Live private coaching sessions for C

* Private tutoring sessions for software design and engineering-
Weekly and monthly plans

 Cand C++ programming languages- Private tutoring sessions

https://learn.coding-bootcamps.com/p/learn-javascript-web-development-by-examples
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages

Coding-bootcamps.com

Thank You

Codlng

Bootcamps

https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

