
By Tom Brownlee
from Coding Bootcamps

Coding-bootcamps.com

Introduction to C
Programming Language

https://coding-bootcamps.com/
https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

Session 4

Pointers and Dynamic Allocation

RECAP-Previous Session

3- Fundamental Data Types and Qualifiers

Constants and Strings

Storage Classes

Scope and Block Structure

Scope and Data Hiding

Data Initialization

Examples, as promised last time.

OUTLINE

4- Pointers and Dynamic Allocation

User of Pointers

Pointer and Address Arithmetic

Dynamic Storage Allocation

sizeof Operator

Double Indirection

POINTERS AND DYNAMIC ALLOCATION

Use of Pointers

Pointers are used (in the C language) in a few different ways:

• To create dynamic data structures.

• To pass and handle variable parameters passed to functions.

○ This is called ‘passing by reference’ as opposed to ‘passing by value.’

• To access information stored in arrays. (Especially if you work with links).

• To reduce certain sources of overhead, resulting in faster code.

One way to help understand pointers is to describe them as values and variables that refer to other
variables. Suppose you have a variable “int foo;” Memory is allocated for it and that location in
memory is referred to by the name “foo.” A pointer is a variable whose value refers to some such
variable.

On 64 bit architectures pointers take up 8 bytes of memory. On 32 bit architectures, they take up 4
bytes. For large, complex data types it’s often much faster to copy one 8-byte value and pass it to a
function than it is to pass a whole new copy of that data, and frequently it’s more useful too.

POINTERS AND DYNAMIC ALLOCATION

Pointer and Address

Arithmetic

POINTERS AND DYNAMIC ALLOCATION

Pointer and Address

Arithmetic

Pointer Dereferencing

So pointers refer to locations in memory. Fine, how do we get to what’s in that spot in

memory?

Dereferencing!

Putting a * before the name of a variable when you use it “de-pointer-ifies” or

dereferences the value.

Examples back on my scratch sheet.

Stack vs Heap memory

Stack memory

• Allocated by variable declarations

• Memory “frames” are created

matching scopes in your program.

• Pushed and popped off a stack

structure (last in, first out)

• Managed automatically by C runtime.

Heap memory

• Allocated dynamically at runtime

• Accessed by pointers

• “Borrowed” from the operating

system (must be freed/returned

manually after you’re done with it)

• Managed by the programmer.

POINTERS AND DYNAMIC ALLOCATION

sizeof Operator

Sizeof is a much used in the C programming language. It is a compile time unary operator which can be
used to compute the size of its operand. The result of sizeof is of unsigned integral type which is usually
denoted by size_t. sizeof can be applied to any data-type, including primitive types such as integer and
floating-point types, pointer types, or compound datatypes such as Structure, union etc.

POINTERS AND DYNAMIC ALLOCATION

Dynamic Storage Allocation

In C, dynamic memory is allocated from the heap using some standard library functions. The two
key dynamic memory functions are malloc() and free().

The malloc() function takes a single parameter, which is the size of the requested memory area in
bytes. It returns a pointer to the allocated memory. If the allocation fails, it returns NULL. The
prototype for the standard library function is like this:

 void *malloc(size_t size);

The free() function takes the pointer returned by malloc() and de-allocates the memory. No
indication of success or failure is returned. The function prototype is like this:

 void free(void *pointer);

If memory acquired using malloc(), calloc(), or other such functions is not freed, the memory is
lost upon the program’s conclusion. This is called a memory leak. Specialized tools like Valgrind
exist to detect memory leaks in software.

Example provided on my scratch sheet.

POINTERS AND DYNAMIC ALLOCATION

Double Indirection

POINTERS AND DYNAMIC ALLOCATION

Double Indirection

SUMMARY

NEXT SESSION

5- Macros

• Functions vs. Inlining

• Purpose of Macros

• Use of Macros

• Making Code More Readable

• Auto Adjustment of Compile Time

Values

• Conditional Compilation

• Making Code Portable

• Simplifying Complex Access Calculations

• Using Macros to Help Write Portable

Programs

• When to Use a Macro instead of a Function

• Using Macros for Debugging

Live private coaching sessions for C

• Private tutoring sessions for software design and engineering-
Weekly and monthly plans

• C and C++ programming languages- Private tutoring sessions

https://learn.coding-bootcamps.com/p/learn-javascript-web-development-by-examples
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages

Coding-bootcamps.com

Thank You

https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

