000006

Coding-bootcamps.com

Introduction to C
Programming Language

~__o

Codlng

By Tom Brownlee BOOtcampS

from Coding Bootcamps

https://coding-bootcamps.com/
https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

Session 6
Arrays

RECAP-PREVIOUS SESSION

Macros

* Functions vs. Inlining

* Purpose of Macros

Use of Macros

Using Macros to Help Write Portable Programs
When to Use a Macro instead of a Function
Using Macros for Debugging

Purpose of Arrays
Declaring an Array
Initializing an Array
Addressing Elements

« Stepping Through an Array
» Variable Size Arrays
 Arrays of Pointers

Arrays of Strings

Passing an Array to a Function
Dynamic Memory Allocation
Multidimensional Arrays

Session 6 Outline

Purpose of Arrays and Declaring an Array

Arrays are a kind of data structure that can store a fixed-size sequential collection of

elements of the same type. An array is used to store a collection of data, but it is often
more useful to think of an array as a collection of variables of the same type.

Instead of declaring individual variables, such as number0Q, numberl, ..., and number99, you
declare one array variable such as numbers and use numbers[0], numbers[1], and ...,

numbers[99] to represent individual variables. A specific element in an array is accessed by an
index

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and
the number of elements required by an array as follows —

Ttwpe arrayiMame [arraysize];

This is called a singfe-dimensional array. The arraySize must be an integer

constant greater than zero and %type can be any wvalid C data type.

example, to declare a 10-element array called balance of type double,
this statement —

For
use

double balance[l1e] ;

Here balance is a wvariable array which

is sufficient to hold up to 10 double
Nnumbers.

Initializing an Array

You can initialize an array in C either one by one or using a single statement
as follows —

double balance[5] = {1ee2.8, 2.8, 3.4, 7.8, 58.0};

The number of values between braces { } cannot be larger than the number
of elements that we declare for the array between square brackets [].

If you omit the size of the array, an array just big enough to hold the
initialization is created. Therefore, if you write —

double balance[] = {1e9©®.0, 2.8, 3.4, 7.8, 50.0};

You will create exactly the same array as you did in the previous example.
Following is an example to assign a single element of the array —

balance[4] = 58.0;

The above statement assigns the 5t element in the array with a value of
50.0. All arrays have 0 as the index of their first element which is also called
the base index and the last index of an array will be total size of the array

minus 1. Shown below is the pictorial representation of the array we discussed
above —

balance 1000.0 2.0 3.4 7.0 50.0

Addressing Elements

AN element is accessed by indexing the array name. This is done by placing
the index of the element within square brackets after the name of the array.
For example —

double salary = balance[2];

The above statement will take the 10t element from the array and assign the
value to salary variable. The following example Shows how to use all the three
above mentioned concepts viz. declaration, assignment, and accessing arrays

HFinclude <stdio.h> =
T ”
int main () {

int n[1@]; /* n is an array of 1@ integers */
int i,Jj:

¥ dnitialize elements of array n to @8 */

fFor (i = @; i < 1e; i++) {
nf i] = i + 1e8e; /* set element at location i to i + 188 */
¥
S¥*F output each array element's wvalue *)/
for (j = ©; j < 1e; Jj++) {
printf("Element[28d] = %d\n", Jj., n[3i] D:
T

return ;

Stepping Through an Array And Variable Size Arrays

int main()

int M = 2;
int arr[M][M];

ig: %i 2;65 1< M; i+4) OmpM:

for (j = @; J < M} j++)

arr[1][j] = @;

intf ("%d ", i]1[31); .] c] 1 9.0 70
pramer arroh (onpiler Ervar: varizble-sized obect may ot be dnitialized
printf("\n");

return 9;

But the following fails with compilation error.

#include<stdio.h>

int main()
{
int M = 2;
int arr[M][M] = {@}; // Trying to initialize all values as @
int i, j;
for (1 =@; 1 < M; i++)
for (j = @; J < M} j++)
printf ("% ", arr[i][]]);
printf("\n");

return 9;

Arrays of Pointers

There may be a situation when we want to maintain an array, which can store pointers to an

int or char or any other data type available. Following is the declaration of an array of pointers
to an integer

int Fptr[mMmax]:;

It declares ptr as an array of MAX integer pointers. Thus, each element in ptr,

holds a pointer to an int wvalue. The following example uses three integers,
which are stored in an array of pointers, as follows —

#include <stdio.h> =

Try it
const int MAX = 3;

int main () {

int warl[] = {1e, 1ee, 2ee};
int i, *ptr[MAaX];

Ffor (i = ©; i < MAX; i++) {
ptr[i] = &var[i]; /* assign the address of integer. */

¥
for (i = ©; i < MAX; i++) {

printf({("Value of wvar[%d] = 2Zd\n", i, *ptr[i]);
by

return ;

Arrays of Strings

Remember that strings are actually arrays of characters, with extra space for a "\0’
character at the end.

We can make arrays of strings using arrays of const char*’s.
Example:

7\

const char* strings[] = {“Hello”, “world!”, *C", “is”, “easy!"};

Passing an Array to a Function

If you want to pass a single-dimension array as an argument in a function, you would have
to declare a formal parameter in one of following three ways and all three declaration
methods produce similar results because each tells the compiler that an integer pointer is
going to be received. Similarly, you can pass multi-dimensional arrays as formal parameters.

Way-1
Formal parameters as a pointer —

void myFunction(int *param)

¥

WwWay-2
Formal parameters as a sized array —

void myFunction(int param[1e]) {

By
Way-3
Formal parameters as an unsized array —

void myFunction(int param[]) {

Passing an Array to a Function

Under the hood, all of these methods produce the same result: The compiler translates the
‘array’ parameter into a pointer to the base type of the array. Because of this, any
information about the size of the array is lost, and array size is best passed as an additional
parameter, as below.

Now, consider the following function, which takes an array as an argument

along with another argument and based on the passed arguments, it returns

the average of the numbers passed through the array as follows —
double getAverage(int arr[], int size) {

int 1;

double avg;

double sum = 8;

for (1 = ©; i < size; ++i) {

sum += arr[i];

avg = sum / size;

return avg;

Dynamic Memory Allocation

We've seen previously that malloc() takes in an arbitrary quantity of bytes to allocate. Because of this, we can
allocate arrays of data using malloc()!

Don’t worry about having to tell free() how much memory needs to be freed. The operating system keeps track
of that all for you. If you were thinking about this though, good on you, because it can come up in C++.

A quick tidbit: Because arrays are all pointer arithmetic under the hood, you can stretch the C syntax to its
breaking point with them. For example, here are three ways to index into an array.

array[4] = 2; I*normal'*/
O[array + 4] = 2; /*Please never actually do this.*/

4[array] = 2; /*"Don’t do this either.*/

Multidimensional Arrays

Two-dimensional Arrays

The simplest form of multidimensional array is the two-dimensional array. A
two-dimensional array is, in essence, a list of one-dimensional arrays. To

declare a two-dimensional integer array of size [x][y], you would write
something as follows —

type arrayMame [x][v 1;

Where type can be any valid C data type and arrayName will be a valid C
identifier. A two-dimensional array can be considered as a table which will
have x number of rows and y number of columns. A two-dimensional array a,
which contains three rows and four columns can be shown as follows —

Column 0 Column 1 Column 2 Column 3
Row 0 a[0][0] af[0][1] af[0][2] a[0][3]
Row 1 af[1][0] af[1][1] a[1][2] af[1][3]
Row 2 a[2][0] a[2][1] a[2][2] a[2][3]

Thus, every element in the array a is identified by an element name of the
form al 1][j 1, where 'a’' is the name of the array, and 'i' and 'j' are the
subscripts that uniquely identify each element in 'a’.

Multidimensional Arrays
Initializing Two-Dimensional Arrays

Multidimensional arrays may be initialized by specifying bracketed wvalues for
each row. Following is an array with 3 rows and each row has 4 columns.

int a[32][4] = {
{®, 1, 2. 3} . Pl initializers for row indexed by @ */
{4, 5, &, 7} ., S initializers fTor row indexed by 1 */
{8, =2, 1, 117% Vi initializers fTor row indexed by 2 */
X5
The nested braces, which indicate the intended row, are optional. The

following initialization is equivalent to the previous example —
int a[2][a] = {©,1,2,2,1,5,6,7,8,9,1@,11};

Accessing Two-Dimensional Array Elements

AN element in a two-dimensional array is accessed by using the subscripts,
i.e., row index and column index of the array. For example —

int wval = a[2][=21:

The above statement will take the 4th element from the 3rd row of the arrav.
You can verify it in the above figure. Let us check the following program where
we have used a nested loop to handle a two-dimensional array —

Summary

NEXT SESSION

Basic Formatted I/O

« Standard 1/O Library

« Character Set Encoding

« Standard Input and Output
« Character I/0O Functions

« Formatted I/O Functions
 String Constants

Live private coaching sessions for C

* Private tutoring sessions for software design and engineering-
Weekly and monthly plans

 Cand C++ programming languages- Private tutoring sessions

https://learn.coding-bootcamps.com/p/learn-javascript-web-development-by-examples
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages

Coding-bootcamps.com

Thank You

Codlng

Bootcamps

https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

