000006

Coding-bootcamps.com

Introduction to C
Programming Language

~__o

Codlng

By Tom Brownlee BOOtcampS

from Coding Bootcamps

https://coding-bootcamps.com/
https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

Session /
Basic Formatted I/0

Arrays

* Purpose of Arrays

» Declaring an Array

* Initializing an Array

» Addressing Elements

« Stepping Through an Array
» Variable Size Arrays
 Arrays of Pointers

Arrays of Strings

Passing an Array to a Function
Dynamic Memory Allocation
Multidimensional Arrays

Recap from Session 6

Session 7 Outline

Basic Formatted 1/O

« Standard 1/O Library

» Character Set Encoding

« Standard Input and Output
« Character I/O Functions

« Formatted I/O Functions

« String Constants

Basic File I/O(Standard 1/O Library)

A file represents a sequence of bytes, regardless of it being a text file or a binary file. C
programming language provides access on high level functions as well as low level (OS level)
calls to handle file on your storage devices. All high-level file IO functions deal with FILE*
objects. You cant modify these directly, but the functions do it all for you.

You can use the fopen() function to create a new file or to open an existing file. This call will
initialize an object of the type FILE, which contains all the information necessary to control
the stream. The prototype of this function call is as follows. Always fclose() files when you're

done!

FILE =fopen({ const char * filename, const char * mode);

Here, filename is a string literal, which wou will use to nmname wyour file, and
access mode can hawve one of the following values —

Mode

r

W

Description
Opens an existing text file for reading purpose.

Opens a text file for writing. If it does not exist, then a new file is created.
Here vour program will start writing content from the beginning of the file.

Opens a text file for writing in appending mode. If it does Nnot exist, then a
new file is created. Here vour program will start appending content in the
existing file content.

Opens a text file for both reading and writing.

Opens a text file for both reading and writing. It first truncates the file to
zero length if it exists, otherwise creates a file if it does not exist.

Opens a text file for both reading and writing. It creates the file if it does
Nnot exist. The reading will start from the beginning but writing can only be
appendeaed.

Standard Input and Output

When we say Input, it means to feed some data into a program. An input can be given in the form
of a file or from the command line. C programming provides a set of built-in functions to read the
given input and feed it to the program as per requirement.

When we say Output, it means to display some data on screen, printer, or in any file. C
programming provides a set of built-in functions to output the data on the computer screen as well
as to save it in text or binary files.

The Standard Files

C programming treats all the devices as files. So devices such as the display
are addressed in the same way as files and the following three files are
automatically opened when a program executes to provide access to the
keyboard and screen.

Standard File File Pointer Device
Standard input stdin Keyboard
Standard output stdout Screen
Standard error stderr Your screen

The file pointers are the means to access the file for reading and writing
purpose. This section explains how to read wvalues from the screen and how to
print the result on the screen.

Standard Input and Output

The getchar() and putchar() Functions

The int getchar(void) function reads the next available character from the
screen and returns it as an integer. This function reads only single character at

a time. You can use this method in the loop in case you want to read more
than one character from the screen.

The int putchar(int c) function puts the passed character on the screen and
returns the same character. This function puts only single character at a time.

You can use this method in the loop in case you want to display more than one
character on the screen. Check the following example —

#include <stdio.h>
int main() {

int c;

printf("Enter a wvalue :");
c = getchar();

printf("\nYou entered: ");
putchar(c);

return 8;

Character I/0O Functions and Formatted I/O Functions

Formatted Output

The function printf() is used for formatted output to standard output based on a format specification. The
format specification string, along with the data to be output, are the parameters to the printf() function.

Syntax:
printf (format, data1, data2,........);

In this syntax format is the format specification string. This string contains, for each variable to be output, a
specification beginning with the symbol % followed by a character called the conversion character.

Example:

printf (“%c", data1);

Character I/O Functions and Formatted I/O Functions

The character specified after % is called a conversion character because it allows one data type to be
converted to another type and printed.

See the following table conversion character and their meanings.

Conversion

Character Meaning

d The data is converted to decimal (integer)

C The data is taken as a character.

S The data is a string and character from the string , are printed until a NULL, character is reached.
f The data is output as float or double with a default Precision 6.

NN For new line (linefeed return)

M\t For tab space (equivalent of 8 spaces)

Example

printf (“%c\n”,datal);

The format specification string may also have text.
Example

printf (“"Character is:"%c\n", datal);

The text "Character is:" is printed out along with the value of data1.

Character I/O Functions and Formatted I/O Functions
A number of functions provide for character oriented 1/0. Their declarations are:

#include <stdio.h>

[* character input */

int fgetc(FILE *stream);

int getc(FILE *stream);

int getchar(void);

int ungetc(int c, FILE *stream);

[* character output */

int fputc(int ¢, FILE *stream);
int putc(int c, FILE *stream);
int putchar(int c);

[* string input */
char *fgets(char *s, int n, FILE *stream);
char *gets(char *s);

[* string output */
int fputs(const char *s, FILE *stream);
int puts(const char *s);

Character Set Encoding

There are tons of different character sets/character encodings out there. Usually, source code is
written in ASCII, as are string literals.

If you need non-ASCII encoding, libraries exist to make this as easy as possible for you to work with.
Just search for the name of the encoding, plus “C library.” C++ has better support for these things.

Under most circumstances, situations where you’d need non-ASCII strings are best handled using
localization files (files of strings used in your program translated to different languages and character
sets), but these are used in large-scale programs that are beyond the scope of this course.

Summary

NEXT SESSION

Program Debugging

* Problem Analysis
Instrumenting with printif
Instrumenting with ctrace
The Purpose of Debuggers
How Not to Use Debuggers
« Symbolic Debuggers

Live private coaching sessions for C

* Private tutoring sessions for software design and engineering-
Weekly and monthly plans

 Cand C++ programming languages- Private tutoring sessions

https://learn.coding-bootcamps.com/p/learn-javascript-web-development-by-examples
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages

More software engineering training

Introduction to Python Programming

Introduction to Java Programming

Introduction to Go Programming

Learn Kotlin Programming by Examples

https://learn.coding-bootcamps.com/p/learn-javascript-web-development-by-examples
https://learn.coding-bootcamps.com/p/learn-python-programming-by-examples
https://learn.coding-bootcamps.com/p/learn-java-programming-by-examples-intro-level
https://learn.coding-bootcamps.com/p/learn-java-programming-by-examples-intro-level
https://learn.coding-bootcamps.com/p/learn-go-programming-language-by-examples
https://learn.coding-bootcamps.com/p/learn-go-programming-language-by-examples
https://learn.coding-bootcamps.com/p/learn-kotlin-programming-language-by-examples

Follow up classes

* |Intermediate level C programming language with hands-on
examples

e Learn C++ Programming by Examples

https://learn.coding-bootcamps.com/p/intermediate-c-programming-language-with-hands-on-examples
https://learn.coding-bootcamps.com/p/intermediate-c-programming-language-with-hands-on-examples
https://learn.coding-bootcamps.com/p/intermediate-c-programming-language-with-hands-on-examples
https://learn.coding-bootcamps.com/p/intermediate-c-programming-language-with-hands-on-examples
https://learn.coding-bootcamps.com/p/learn-c-programming-by-examples1

Coding-bootcamps.com

Thank You

Codlng

Bootcamps

https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

