
By Tom Brownlee
from Coding Bootcamps

Coding-bootcamps.com

Introduction to C
Programming Language

https://coding-bootcamps.com/
https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

Session 7

Basic Formatted I/O

Recap from Session 6

Arrays

• Purpose of Arrays

• Declaring an Array

• Initializing an Array

• Addressing Elements

• Stepping Through an Array

• Variable Size Arrays

• Arrays of Pointers

• Arrays of Strings

• Passing an Array to a Function

• Dynamic Memory Allocation

• Multidimensional Arrays

Session 7 Outline

Basic Formatted I/O

• Standard I/O Library

• Character Set Encoding

• Standard Input and Output

• Character I/O Functions

• Formatted I/O Functions

• String Constants

Basic File I/O(Standard I/O Library)

A file represents a sequence of bytes, regardless of it being a text file or a binary file. C
programming language provides access on high level functions as well as low level (OS level)
calls to handle file on your storage devices. All high-level file IO functions deal with FILE*
objects. You can’t modify these directly, but the functions do it all for you.

You can use the fopen() function to create a new file or to open an existing file. This call will
initialize an object of the type FILE, which contains all the information necessary to control
the stream. The prototype of this function call is as follows. Always fclose() files when you’re
done!

Standard Input and Output

When we say Input, it means to feed some data into a program. An input can be given in the form
of a file or from the command line. C programming provides a set of built-in functions to read the
given input and feed it to the program as per requirement.

When we say Output, it means to display some data on screen, printer, or in any file. C
programming provides a set of built-in functions to output the data on the computer screen as well
as to save it in text or binary files.

Standard Input and Output

Character I/O Functions and Formatted I/O Functions

Formatted Output

The function printf() is used for formatted output to standard output based on a format specification. The
format specification string, along with the data to be output, are the parameters to the printf() function.

Syntax:

printf (format, data1, data2,……..);

In this syntax format is the format specification string. This string contains, for each variable to be output, a
specification beginning with the symbol % followed by a character called the conversion character.

Example:

printf (“%c”, data1);

Character I/O Functions and Formatted I/O Functions

Character I/O Functions and Formatted I/O Functions

A number of functions provide for character oriented I/O. Their declarations are:

#include <stdio.h>

/* character input */

int fgetc(FILE *stream);

int getc(FILE *stream);

int getchar(void);

int ungetc(int c, FILE *stream);

/* character output */

int fputc(int c, FILE *stream);

int putc(int c, FILE *stream);

int putchar(int c);

/* string input */

char *fgets(char *s, int n, FILE *stream);

char *gets(char *s);

/* string output */

int fputs(const char *s, FILE *stream);

int puts(const char *s);

Character Set Encoding

There are tons of different character sets/character encodings out there. Usually, source code is
written in ASCII, as are string literals.

If you need non-ASCII encoding, libraries exist to make this as easy as possible for you to work with.
Just search for the name of the encoding, plus “C library.” C++ has better support for these things.

Under most circumstances, situations where you’d need non-ASCII strings are best handled using
localization files (files of strings used in your program translated to different languages and character
sets), but these are used in large-scale programs that are beyond the scope of this course.

Summary

NEXT SESSION

Program Debugging

• Problem Analysis

• Instrumenting with printif

• Instrumenting with ctrace

• The Purpose of Debuggers

• How Not to Use Debuggers

• Symbolic Debuggers

Live private coaching sessions for C

• Private tutoring sessions for software design and engineering-
Weekly and monthly plans

• C and C++ programming languages- Private tutoring sessions

https://learn.coding-bootcamps.com/p/learn-javascript-web-development-by-examples
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-c-cplusplus-programming-languages

More software engineering training

• Introduction to Python Programming

• Introduction to Java Programming

• Introduction to Go Programming

• Learn Kotlin Programming by Examples

https://learn.coding-bootcamps.com/p/learn-javascript-web-development-by-examples
https://learn.coding-bootcamps.com/p/learn-python-programming-by-examples
https://learn.coding-bootcamps.com/p/learn-java-programming-by-examples-intro-level
https://learn.coding-bootcamps.com/p/learn-java-programming-by-examples-intro-level
https://learn.coding-bootcamps.com/p/learn-go-programming-language-by-examples
https://learn.coding-bootcamps.com/p/learn-go-programming-language-by-examples
https://learn.coding-bootcamps.com/p/learn-kotlin-programming-language-by-examples

Follow up classes

• Intermediate level C programming language with hands-on
examples

• Learn C++ Programming by Examples

https://learn.coding-bootcamps.com/p/intermediate-c-programming-language-with-hands-on-examples
https://learn.coding-bootcamps.com/p/intermediate-c-programming-language-with-hands-on-examples
https://learn.coding-bootcamps.com/p/intermediate-c-programming-language-with-hands-on-examples
https://learn.coding-bootcamps.com/p/intermediate-c-programming-language-with-hands-on-examples
https://learn.coding-bootcamps.com/p/learn-c-programming-by-examples1

Coding-bootcamps.com

Thank You

https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

