Course Agenda

e Intro to Corda: Architecture, concepts, components.
o Getting Started: Set up dev environment for CorDapps.
e States: Model shared facts and agreements on ledger.
e Contracts: TDD of smart contracts controlling ledger evolution.
e Transactions: Transaction lifecycle, and how transactions propose ledger updates.
e Flows: Flow testing framework to develop flows to automate business logic.
e Corda Node: Node design, what it can/cannot do, what services/APIs nodes offer.
e Corda Network: Network structure and how data flows between nodes.
Alt-Enter <- "unresolved reference"
Ctrl-2Z <- "undo"

Ctrl-Shift-Z <- "redo"
Ctrl-Click <- "go to"
Ctrl-/ <- "toggle comment"

Enable Zoom Font (Ctrl-mouse-wheel) -> File - Settings — Editor —
General — Change font size (Zoom) with Ctrl+Mouse Wheel

Editor Colors: File | Settings | Editor | Color Scheme | Color Scheme
-> Darcula/Default

Part 0 - Course Setup

Move previous folders to holding folder.

Download training template into new folder with new name.
(https://github.com/roger3cev/corda-training-template)

Open training template folder in IntelliJ.

File | Project Structure -> Project -> SDK -> 1.8 JDK -> OK. (C:\Program Files\Java\jdk1.8.0_171)

File | Project Structure -> Modules -> + -> Import Module -> path -> OK -> Gradle -> Next -> Finish -> OK.
Wait for build to sync. (Wait for progress bar in lower right of IntelliJ)

Build project (Wait for "Compilation complete successfully" in lower left of IntelliJ)

Run unit tests -> (Wait for Test events were not received" in Unit tests panel of IntelliJ).

Part 1 - IOUStateTests.kt

IOUStateTests.kt -> uncomment test 1:

https://github.com/roger3cev/corda-training-template

/**
* Task 1.
* TODO: Add an 'amount' property of type [Amount] to the [IOUState] class to
get this test to pass.
* Hint: [Amount] is a template class that takes a class parameter of the
token you would like an [Amount] of.
* As we are dealing with cash lent from one Party to another a sensible token
to use would be [Currency].
*/
@Test
fun hasIOUAmountFieldOfCorrectType () {
// Does the amount field exist?
IOUState: :class. java.getDeclaredField ("amount")
// Is the amount field of the correct type?
assertEquals (I0OUState: :class. java.getDeclaredField ("amount") . type,
Amount: :class. java)

}

Run tests -> Tests failed: 1 of 1

IOUState.kt

import net.corda.core.contracts.Amount
import java.util.Currency

data class IOUState(val amount: Amount<Currency>): ContractState ({
override val participants: List<Party> get() = 1istOf()
}

Run tests -> Tests passed: 1 of 1

IOUStateTests.kt -> uncomment test 2:

/**
* Task 2.
* TODO: Add a 'lender' property of type [Party] to the [IOUState] class to
get this test to pass.
*/
@Test
fun haslenderFieldOfCorrectType () {
// Does the lender field exist?
IOUState: :class. java.getDeclaredField ("lender")
// Is the lender field of the correct type?
assertEquals (IOUState::class. java.getDeclaredField ("lender") . type,
Party::class. java)

}

IOUState.kt

data class IOUState(val amount: Amount<Currency>,
val lender: Party): ContractState {
override val participants: List<Party> get() = 1istOf()

Run tests -> Tests passed: 2 of 2

IOUStateTests.kt -> uncomment test 3:

/**
* Task 3.
* TODO: Add a 'borrower' property of type [Party] to the [IOUState] class to
get this test to pass.
*/
@Test
fun hasBorrowerFieldOfCorrectType () {
// Does the borrower field exist?
IOUState: :class. java.getDeclaredField ("borrower")
// Is the borrower field of the correct type?
assertEquals (IO0UState: :class. java.getDeclaredField ("borrower") . type,
Party::class. java)

}

IOUState.kt

data class IOUState(val amount: Amount<Currency>,
val lender: Party,
val borrower: Party): ContractState {
override val participants: List<Party> get() = 1istOf()

Run tests -> Tests passed: 3 of 3

IOUStateTests.kt -> uncomment test 4:

/**

* Task 4.

* TODO: Add a 'paid' property of type [Amount] to the [IOUState] class to get
this test to pass.

* Hint:

* - We would like this property to be initialised to a zero amount of
Currency upon creation of the [IOUState].

* — You can use the [POUNDS] extension function over [Int] to create an

amount of pounds e.g. '10.POUNDS'.

* - This property keeps track of how much of the initial [IOUState.amount]
has been settled by the borrower

* - You can initialise a property with a default value in a Kotlin data class
like this:

data class (val number: Int = 10)

* % % %

- We need to make sure that the [IOUState.paid] property is of the same
currency type as the

* [IOUState.amount] property. You can create an instance of the [Amount]
class that takes a zero value and a token

* representing the currency - which should be the same currency as the
[IOUState.amount] property.

*/
@Test

fun hasPaidFieldOfCorrectType () {

// Does the paid field exist?

IOUState::class. java.getDeclaredField ("paid")

// Is the paid field of the correct type?

assertEquals (IOUState: :class. java.getDeclaredField ("paid") . type,
Amount: :class. java)

}

IOUState.kt

data class IOUState(val amount: Amount<Currency>,
val lender: Party,
val borrower: Party,
val paid: Amount<Currency> = Amount (0, amount.token)) :
ContractState {
override val participants: List<Party> get() = 1istOf()

Run tests -> Tests passed: 4 of 4

/**
* Task 5.
* TODO: Add an entry to the [IOUState.participants] list for the lender.
* Hint: [1listOf] takes any number of parameters and will add them to the 1list
*/
@Test
fun lenderIsParticipant () {
val iouState = IOUState(l.POUNDS, ALICE.party, BOB.party)
assertNotEquals (iouState.participants.indexOf (ALICE.party), -1)

IOUState.kt

data class IOUState(val amount: Amount<Currency>,
val lender: Party,
val borrower: Party,
val paid: Amount<Currency> = Amount (0, amount.token)) :
ContractState {
override val participants: List<Party> get() = 1istOf(lender)

}

Run tests -> Tests passed: 5 of 5

IOUStateTests.kt -> uncomment test 6:

/**
* Task 6.
* TODO: Similar to the last task, add an entry to the [IOUState.participants]
list for the borrower.
*/
@Test
fun borrowerIsParticipant () {
val iouState = IOUState (l.POUNDS, ALICE.party, BOB.party)
assertNotEquals (iouState.participants.indexOf (BOB.party), -1)

IOUState.kt

data class IOUState(val amount: Amount<Currency>,
val lender: Party,
val borrower: Party,
val paid: Amount<Currency> = Amount (0, amount.token)) :
ContractState {
override val participants: List<Party> get() = 1listOf(lender, borrower)

Run tests -> Tests passed: 6 of 6

IOUStateTests.kt -> uncomment test 7

/**

* Task 7.

* TODO: Implement [LinearState] along with the required properties and
methods.

* Hint: [LinearState] implements [ContractState] which defines an additional
property and method. You can use

* IntelllJ to automatically add the member definitions for you or you can add
them yourself. Look at the definition

* of [LinearState] for what requires adding.

*/
@Test
fun isLinearState() {

assert (LinearState::class. java.isAssignableFrom (IOUState: :class. java))

}

IOUState.kt

import net.corda.core.contracts.LinearState
import net.corda.core.contracts.Uniqueldentifier

data class IOUState(val amount: Amount<Currency>,
val lender: Party,
val borrower: Party,
val paid: Amount<Currency> = Amount (0, amount.token),
override val linearId: UniquelIdentifier =
Uniqueldentifier()): LinearState {
override val participants: List<Party> get() = 1istOf(lender, borrower)

Run tests -> Tests passed: 7 of 7

IOUStateTests.kt -> uncomment test 8

/**
* Task 8.
* TODO: Override the [LinearState.linearId] property and assign it a value
via your state's constructor.
* Hint:
* - The [LinearState.linearlId] property is of type [UniqueIdentifier]. You
need to create a new instance of
* the [UniqueIdentifier] class.
* - The [LinearState.linearId] is designed to link all [LinearState]s (which
represent the state of an
* agreement at a specific point in time) together. All the [LinearState]s
with the same [LinearState.linearId]
* represent the complete life-cycle to date of an agreement, asset or shared
fact.
* — Provide a default value for [linearId] for a new [IOUState]
*/
@Test
fun haslLinearIdFieldOfCorrectType () {
// Does the linearId field exist?
IOUState: :class. java.getDeclaredField ("linearId")
// Is the linearId field of the correct type?
assertEquals (IOUState: :class. java.getDeclaredField ("linearId") . type,
UniqueIdentifier::class. java)

}

IOUState.kt

No code changes required

Run tests -> Tests passed: 8 of 8

IOUStateTests.kt -> uncomment test 9

/**

* Task 9.

* TODO: Ensure parameters are ordered correctly.

* Hint: Make sure that the lender and borrower fields are not in the wrong
order as this may cause some

* confusion in subsequent tasks!

*/

@Test

fun checkIOUStateParameterOrdering() {
val fields = IOUState::class. java.declaredFields
val amountIdx =

fields. indexOf (IOUState: :class. java.getDeclaredField ("amount"))
val lenderIdx =

fields.indexOf (IOUState: :class. java.getDeclaredField ("lender"))
val borrowerIdx =

fields.indexOf (IOUState: :class. java.getDeclaredField ("borrower"))
val paidIdx = fields.indexOf (IOUState::class. java.getDeclaredField ("paid"))
val linearIdIdx =

fields.indexOf (IOUState: :class. java.getDeclaredField ("linearId"))

assert
assert
assert
assert

amountIdx < lenderIdx)
lenderIdx < borrowerIdx)
borrowerIdx < paidIdx)
paidldx < linearIdIdx)

—_—

IOUState.kt

No code changes required

Run tests -> Tests passed: 9 of 9

IOUStateTests.kt -> uncomment test 10:

/**

* Task 10.

* TODO: Add a helper method called [pay] that can be called from an
[IOUState] to settle an amount of the IOU.

* Hint:

* - You will need to increase the [IOUState.paid] property by the amount the
borrower wishes to pay.

* - Add a new function called [pay] in [IOUState]. This function will need to
return an [IOUState].

* - The existing state is immutable so a new state must be created from the
exlisting state. Kotlin provides a [copy]

* method which creates a new object with new values for specified fields.

* - [copy] returns a copy of the object instance and the fields can be
changed by specifying new values as

* parameters to [copy] */
@Test

fun checkPayHelperMethod () {
val iou = IOUState (10.DOLLARS, ALICE.party, BOB.party)
assertEquals (5.DOLLARS, iou.pay(5.DOLLARS) .paid)
assertEquals (3.DOLLARS, iou.pay(l.DOLLARS) .pay (2.DOLLARS) .paid)
assertEquals (10.DOLLARS,

iou.pay (5.DOLLARS) .pay (3.DOLLARS) .pay (2.DOLLARS) .paid)

}

I0UState.kt

data class IOUState(val amount: Amount<Currency>,
val lender: Party,
val borrower: Party,
val paid: Amount<Currency> = Amount (0, amount.token),
override val linearId: Uniqueldentifier =
Uniqueldentifier()): LinearState {
override val participants: List<Party> get() = 1istOf(lender, borrower)
fun pay(amountPaid: Amount<Currency>)= copy (paid = paid.plus (amountPaid))

Run tests -> Tests passed: 10 of 10

IOUStateTests.kt -> uncomment test 11:

/**
* Task 11.
* TODO: Add a helper method called [withNewLender] that can be called from an
[IOUState] to change the IOU's lender.
*/
@Test
fun checkWithNewLenderHelperMethod () {
val iou = IOUState(10.DOLLARS, ALICE.party, BOB.party)
assertEquals (MINICORP.party, iou.withNewLender (MINICORP.party) .lender)
assertEquals (MEGACORP.party, iou.withNewLender (MEGACORP.party) .lender)

IOUState.kt

data class I0UState(val amount: Amount<Currency>,
val lender: Party,
val borrower: Party,
val paid: Amount<Currency> = Amount (0, amount.token),

override val linearId: Uniqueldentifier =

UniqueIdentifier()): LinearState {
override val participants: List<Party> get() = 1istOf(lender, borrower)
fun pay(amountPaid: Amount<Currency>)= copy(paid = paid.plus (amountPaid))
fun withNewLender (newLender: Party) = copy(lender = newLender)

Run tests -> Tests passed: 11 of 11

Part 2 - IOUlIssueTests.kt

I0UlIssueTests.kt -> uncomment test 1:

/**
* Task 1.

* Recall that Commands are required to hint to the intention of the
transaction as well as take a list of

* public keys as parameters which correspond to the required signers for the
transaction.

* Commands also become more important later on when multiple actions are
possible with an IOUState, e.g. Transfer

* and Settle.

* TODO: Add an "Issue" command to the IOUContract and check for the existence
of the command in the verify function.

* Hint:

* - For the create command we only care about the existence of it in a
transaction, therefore it should subclass

* the [TypeOnlyCommandData] class.

* — The command should be defined inside [IOUContract].

* - You can use the [requireSingleCommand] function on [tx.commands] to check
for the existence and type of the specified command

* in the transaction. [requireSingleCommand] requires a generic type to
identify the type of command required.

*

* requireSingleCommand<REQUIRED COMMAND> ()

*

* - We usually encapsulate our commands around an interface inside the
contract class called [Commands] which

* implements the [CommandData] interface. The [Create] command itself
should be defined inside the [Commands]

* interface as well as implement it, for example:
*
* interface Commands : CommandData {
* class X : TypeOnlyCommandData (), Commands
* }
*
* — We can check for the existence of any command that implements
[IOUContract.Commands] by using the
* [requireSingleCommand] function which takes a type parameter.
*/
@Test
fun mustIncludelIssueCommand () {

val iou = IOUState(l.POUNDS, ALICE.party, BOB.party)
ledgerServices. ledger {
transaction {
output (IOUContract.IOU_CONTRACT ID, iou)
command (11istOf (ALICE.publicKey, BOB.publicKey), DummyCommand()) //
Wrong type.
this.fails ()
}
transaction {
output (IOUContract.IOU_CONTRACT ID, iou)
command (11stOf (ALICE.publicKey, BOB.publicKey),
IOUContract.Commands.Issue()) // Correct type.
this.verifies()

}

IOUContract.kt

import net.corda.core.contracts.TypeOnlyCommandData

interface Commands : CommandData {
// Add commands here.

// E.g
// class DoSomething : TypeOnlyCommandData (), Commands
class Issue : TypeOnlyCommandData (), Commands

}

/**
* The contract code for the [IOUContract].
* The constraints are self documenting so don't require any additional
explanation.
*/
override fun verify(tx: LedgerTransaction) {
// Add contract code here.
// requireThat {
//
S/}

tx.commands. requireSingleCommand<IOUContract.Commands> ()

Run tests -> Tests passed: 12 of 12

I0UlssueTests.kt -> uncomment test 2:

/**

* Task 2.

* As previously observed, issue transactions should not have any input state
references. Therefore we must check to

* ensure that no input states are included in a transaction to issue an IOU.

* TODO: Write a contract constraint that ensures a transaction to issue an
IOU does not include any input states.

* Hint: use a [requireThat] block with a constraint to inside the
[IOUContract.verify] function to encapsulate your

* constraints:

*

* requireThat |
* "Message when constraint fails" using (boolean constraint
expression)

. }

*

* Note that the unit tests often expect contract verification failure with a
specific message which should be

* defined with your contract constraints. If not then the unit test will
faill!

*

* You can access the list of inputs via the [LedgerTransaction] object which
is passed into

* [IOUContract.verify].

*/
@Test
fun issueTransactionMustHaveNoInputs () {

val iou = IOUState(l.POUNDS, ALICE.party, BOB.party)

10

ledgerServices. ledger {
transaction {
input (IOUContract.IOU_CONTRACT ID, DummyState())
command (1istOf (ALICE. publchey, BOB.publicKey) ,
IOUContract.Commands.Issue ())
output (IOUContract.IOU_CONTRACT ID, iou)
this "fails with® "No inputs should be consumed when issuing an
IOoU."
}
transaction {
output (IOUContract. IOU_CONTRACT 1ID, iou)
command (11istOf (ALICE. publchey, "BOB. publicKey),
IOUContract.Commands.Issue ())
this.verifies() // As there are no input states.

I0UContract.kt

override fun verify(tx: LedgerTransaction) {
// Add contract code here.
// requireThat
//
/) 0}

tx.commands. requireSingleCommand<IOUContract.Commands> ()
requireThat {
"No inputs should be consumed when issuing an IOU." using
(tx.inputStates.isEmpty())

Run tests -> Tests passed: 13 of 13

I0UlIssueTests.kt -> uncomment test 3:

/**
* Task 3.
* Now we need to ensure that only one [IOUState] is issued per transaction.
* TODO: Write a contract constraint that ensures only one output state is
created in a transaction.
* Hint: Write an additional constraint within the existing [requireThat]
block which you created in the previous
* task.
*/
@Test
fun issueTransactionMustHaveOneOutput () {
val iou = IOUState (1.POUNDS, ALICE.party, BOB.party)
ledgerServices. ledger {
transaction {
command (1istOf (ALICE.publicKey, BOB.publicKey),
IOUContract.Commands.Issue())
output (IOUContract.IOU_CONTRACT ID, iou) // Two outputs fails.

11

output (IOUContract.IOU_CONTRACT ID, iou)
this "fails with® "Only one output state should be created when
issuing an IOU."
}
transaction {
command (1istOf (ALICE.publicKey, BOB.publicKey),
IOUContract.Commands.Issue ())
output (IOUContract.IOU_CONTRACT ID, iou) // One output passes.
this.verifies|()

I0UContract.kt

override fun verify(tx: LedgerTransaction) {
// Add contract code here.
// requireThat {
//
7w,
tx.commands. requireSingleCommand<IOUContract.Commands> ()
requireThat {
"No inputs should be consumed when issuing an IOU." using
(tx.inputStates.isEmpty())
"Only one output state should be created when issuing an IOU." using
(tx.outputStates.size == 1)

Run tests -> Tests passed: 14 of 14

I0UlssueTests.kt -> uncomment test 4;

/**

* Task 4.

* Now we need to consider the properties of the [IOUState]. We need to ensure
that an IOU should always have a

* positive value.

* TODO: Write a contract constraint that ensures newly issued IOUs always
have a positive value.

* Hint: You will nee da number of hints to complete this task!

* - Use the Kotlin keyword 'val' to create a new constant which will hold a
reference to the output IOU state.
* - You can use the Kotlin function [single] to either grab the single

element from the 1list or throw an exception

* if there are 0 or more than one elements in the list. Note that we have
already checked the outputs list has

* only one element in the previous task.

* - We need to obtain a reference to the proposed IOU for issuance from the
[LedgerTransaction.outputs] Ilist.

* This 1list is typed as a list of [ContractState]s, therefore we need to
cast the [ContractState] which we return

* from [single] to an [IOUState]. You can use the Kotlin keyword

'as' to

12

cast a class. E.qg.
*

val state = tx.outputStates.single() as XState

* % %

- When checking the [IOUState.amount] property is greater than zero, you
need to check the
* [IOUState.amount.quantity] field.
*/
@Test
fun cannotCreateZeroValueIOUs () {
ledgerServices. ledger {
transaction {
command (11istOf (ALICE.publicKey, BOB.publicKey),
IOUContract.Commands.Issue ())
output (IOUContract.IOU_CONTRACT ID, IOUState (0.POUNDS, ALICE.party,
BOB.party)) // Zero amount fails.
this "fails with® "A newly issued IOU must have a positive
amount."
}
transaction {
command (11istOf (ALICE.publicKey, BOB.publicKey),
IOUContract.Commands.Issue ())
output (IOUContract.IOU_CONTRACT ID, IOUState(100.SWISS FRANCS,
ALICE.party, BOB.party))
this.verifies ()
}
transaction {
command (1istOf (ALICE.publicKey, BOB.publicKey),
IOUContract.Commands.Issue())
output (IOUContract.IOU CONTRACT ID, IOUState(l.POUNDS, ALICE.party,
BOB.party))
this.verifies ()
}
transaction {
command (1istOf (ALICE.publicKey, BOB.publicKey),
IOUContract.Commands.Issue ())
output (IOUContract.IOU CONTRACT ID, IOUState(10.DOLLARS,
ALICE.party, BOB.party))
this.verifies ()

}

I0UContract.kt

override fun verify(tx: LedgerTransaction) {
// Add contract code here.
// requireThat
//
/))
tx.commands. requireSingleCommand<IOUContract.Commands> ()
requireThat {
"No inputs should be consumed when issuing an IOU." using
(tx.inputStates.isEmpty())
"Only one output state should be created when issuing an IOU." using
(tx.outputStates.size == 1)

13

val outputState = tx.outputStates.single() as IOUState
"A newly issued IOU must have a positive amount." using
(outputState.amount.quantity > 0)

Run tests -> Tests passed: 15 of 15

I0UlIssueTests.kt -> uncomment test 5:

/**

* Task 5.

* For obvious reasons, the identity of the lender and borrower must be
different.

* TODO: Add a contract constraint to check the lender is not the borrower.

* Hint:
* - You can use the [IOUState.lender] and [IOUState.borrower] properties.
* - This check must be made before the checking who has signed.
*/
@Test
fun lenderAndBorrowerCannotBeTheSame () {

val iou = IOUState(l.POUNDS, ALICE.party, BOB.party)
val borrowerIsLenderIou = IOUState(10.POUNDS, ALICE.party, ALICE.party)
ledgerServices. ledger {
transaction {
command (1istOf (ALICE.publicKey,
BOB.publicKey) , IOUContract.Commands.Issue ())
output (IOUContract.IOU_CONTRACT ID, borrowerIsLenderIou)
this "fails with® "The lender and borrower cannot have the same
identity."
}
transaction {
command (1istOf (ALICE.publicKey, BOB.publicKey),
IOUContract.Commands.Issue())
output (IOUContract.IOU_CONTRACT ID, iou)
this.verifies()

I0UContract.kt

override fun verify(tx: LedgerTransaction) {
// Add contract code here.
// requireThat {
//
S/}
tx.commands. requireSingleCommand<IOUContract.Commands> ()
requireThat {
"No inputs should be consumed when issuing an IOU." using
(tx.inputStates.isEmpty())
"Only one output state should be created when issuing an IOU." using
(tx.outputStates.size == 1)

14

val outputState = tx.outputStates.single() as IOUState

"A newly issued IOU must have a positive amount." using
(outputState.amount.quantity > 0)

"The lender and borrower cannot have the same identity." using
(outputState.lender != outputState.borrower)

Run tests -> Tests passed: 16 of 16

I0UlssueTests.kt -> uncomment test 6:

/**

* Task 6.

* The list of public keys which the commands hold should contain all of the
participants defined in the [IOUState].

* This 1s because the IOU is a bilateral agreement where both parties
involved are required to sign to issue an

* IOU or change the properties of an existing IOU.

* TODO: Add a contract constraint to check that all the required signers are
[IOUState] participants.

* Hint:

* - In Kotlin you can perform a set equality check of two sets with the ==
operator.

* — We need to check that the signers for the transaction are a subset of the

participants list.
* — We don't want any additional public keys not listed in the IOUs
participants list.

* - You will need a reference to the Issue command to get access to the 1ist
of signers.
* - [requireSingleCommand] returns the single required command - you can

assign the return value to a constant.
*
* Kotlin Hints
* Kotlin provides a map function for easy conversion of a [Collection] using
map
* - https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map.html
* [Collection] can be turned into a set using toSet()
E -
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/to-set.html
*/
@Test
fun lenderAndBorrowerMustSignIssueTransaction () {
val iou = IOUState(l.POUNDS, ALICE.party, BOB.party)
ledgerServices. ledger {
transaction {
command (DUMMY .publicKey, IOUContract.Commands.Issue())
output (IOUContract.IOU_CONTRACT 1ID, iou)
this "fails with® "Both lender and borrower together only may sign
IOU issue transaction."
}
transaction {
command (ALICE.publicKey, IOUContract.Commands.Issue())
output (IOUContract.IOU_CONTRACT ID, iou)

15

this "fails with® "Both lender and borrower together only may sign
IOU issue transaction."
}
transaction {
command (BOB.publicKey, IOUContract.Commands.Issue())
output (IOUContract.IOU_CONTRACT ID, iou)
this "fails with® "Both lender and borrower together only may sign
IOU issue transaction."
}
transaction {
command (1istOf (BOB.publicKey, BOB.publicKey, BOB.publicKey),
IOUContract.Commands.Issue())
output (IOUContract.IOU_CONTRACT ID, iou)
this "fails with® "Both lender and borrower together only may sign
IOU issue transaction."
}
transaction {
command (1istOf (BOB.publicKey, BOB.publicKey, MINICORP.publicKey,
ALICE.publicKey), IOUContract.Commands.Issue ())
output (IOUContract.IOU CONTRACT 1ID, iou)
this "fails with® "Both lender and borrower together only may sign
IOU issue transaction."
}
transaction {
command (1istOf (BOB.publicKey, BOB.publicKey, BOB.publicKey,
ALICE.publicKey), IOUContract.Commands.Issue())
output (IOUContract.IOU_CONTRACT 1ID, iou)
this.verifies|()
}
transaction {
command (1istOf (ALICE.publicKey,
BOB.publicKey) , IOUContract.Commands.Issue ())
output (IOUContract.IOU_CONTRACT ID, iou)
this.verifies|()

IO0UContract.kt

override fun verify(tx: LedgerTransaction) {
// Add contract code here.
// requireThat {
//
S/}
val command = tx.commands.requireSingleCommand<IOUContract.Commands> ()
requireThat {
"No inputs should be consumed when issuing an IOU." using
(tx.inputStates.isEmpty())
"Only one output state should be created when issuing an IOU." using
(tx.outputStates.size == 1)
val outputState = tx.outputStates.single() as IOUState
"A newly issued IOU must have a positive amount." using
(outputState.amount.quantity > 0)
"The lender and borrower cannot have the same identity." using
(outputState.lender != outputState.borrower)

16

"Both lender and borrower together only may sign IOU issue
transaction." using

(command.signers.toSet () == outputState.participants.map
{it.owningKey} . toSet())

Run tests -> Tests passed: 17 of 17

Part 3 - IOUIssueFlowTests.kt

I0UlssueFlowTests.kt -> uncomment test 1:

/**

* Task 1.

* Build out the [IOUIssueFlow]!

* TODO: Implement the [IOUIssueFlow] flow which builds and returns a
partially [SignedTransaction].

* Hint:

* - There's a lot to do to get this unit test to pass!

* - Create a [TransactionBuilder] and pass it a notary reference.

* -- A notary [Party] object can be obtained from
[FlowLogic.serviceHub.networkMapCache] .

* —— In this training project there is only one notary

* - Create an [IOUContract.Commands.Issue] inside a new [Command].

* —-— The required signers will be the same as the state's participants

*# —— Add the [Command] to the transaction builder [addCommand] .

* - Use the flow's [IOUState] parameter as the output state with
[addOutputState]
* - Extra credit: use [TransactionBuilder.withItems] to create the
transaction instead
* - Sign the transaction and convert it to a [SignedTransaction] using the
[serviceHub.signInitialTransaction] method.
* - Return the [SignedTransaction].
*/
@Test
fun flowReturnsCorrectlyFormedPartiallySignedTransaction () {
val lender = a.info.chooseIdentityAndCert () .party
val borrower = b.info.chooseIdentityAndCert () .party
val iou = IOUState (10.POUNDS, lender, borrower)
val flow = IOUIssueFlow(iou)
val future = a.startFlow (flow)
mockNetwork.runNetwork ()
// Return the unsigned(!) SignedTransaction object from the IOUIssueFlow.
val ptx: SignedTransaction = future.getOrThrow/()
// Print the transaction for debugging purposes.
println(ptx.tx)
// Check the transaction is well formed...
// No outputs, one input IOUState and a command with the right properties.
assert (ptx.tx.inputs.isEmpty())
assert (ptx.tx.outputs.single() .data is IOUState)
val command = ptx.tx.commands.single ()
assert (command.value is IOUContract.Commands.Issue)

17

assert (command.signers. toSet () == iou.participants.map { it.owningKey
}.toSet())
ptx.verifySignaturesExcept (borrower.owningKey,

mockNetwork.defaultNotaryNode.info.legalIdentitiesAndCerts. first () .owningKey)
}

I0UlIssueFlow.kt

class IOUIssueFlow(val state: IOUState) : FlowLogic<SignedTransaction>() {
@Suspendable
override fun call(): SignedTransaction {

val notaryParty = serviceHub.networkMapCache.notaryIdentities.first ()

val builder = TransactionBuilder (notaryParty)

val command = Command (IOUContract.Commands.Issue (),
state.participants.map { it.owningKey })

builder.addCommand (command)

builder.addOutputState (state, IOUContract.IOU_CONTRACT ID)

val signedTx = serviceHub.signInitialTransaction (builder)

return signedTx

Run tests -> Tests passed: 18 of 18

I0UIssueFlowTests.kt -> uncomment test 2:

/**
* Task 2.
* Now we have a well formed transaction, we need to properly verify it using
the [IOUContract].
* TODO: Amend the [IOUIssueFlow] to verify the transaction as well as sign
it.
*/
@Test
fun flowReturnsVerifiedPartiallySignedTransaction () ({
// Check that a zero amount IOU fails.
val lender = a.info.chooseIdentityAndCert () .party
val borrower = b.info.chooseIdentityAndCert () .party
val zeroIou = IOUState (0.POUNDS, lender, borrower)
val futureOne = a.startFlow (IOUIssueFlow (zeroIou))
mockNetwork.runNetwork ()
assertFailsWith<TransactionVerificationException> { futureOne.getOrThrow /()

// Check that an IOU with the same participants fails.

val borrowerIsLenderIou = IOUState (10.POUNDS, lender, lender)

val futureTwo = a.startFlow (IOUIssueFlow (borrowerIsLenderIou))
mockNetwork . runNetwork ()

assertFailsWith<TransactionVerificationException> { futureTwo.getOrThrow ()

// Check a good IOU passes.

val iou = IOUState (10.POUNDS, lender, borrower)
val futureThree = a.startFlow (IOUIssueFlow (iou))
mockNetwork. runNetwork ()

18

futureThree.getOrThrow ()

10UIssueFlow.kt

class IOUIssueFlow(val state: IOUState) : FlowLogic<SignedTransaction>() {
@Suspendable
override fun call(): SignedTransaction {

val notaryParty = serviceHub.networkMapCache.notaryIdentities.first()

val builder = TransactionBuilder (notaryParty)

val command = Command (IOUContract.Commands.Issue(),
state.participants.map { it.owningKey })

builder.addCommand (command)

builder.addOutputState (state, IOUContract.IOU_CONTRACT_ID)

builder.verify (serviceHub)

val signedTx = serviceHub.signInitialTransaction (builder)

return signedTx

Run tests -> Tests passed: 19 of 19

I0UlIssueFlowTests.kt -> uncomment test 3:

/**

* IMPORTANT: Review the [CollectSignaturesFlow] before continuing here.

* Task 3.

* Now we need to collect the signature from the [otherParty] using the
[CollectSignaturesFlow] .

* TODO: Amend the [IOUIssueFlow] to collect the [otherParty]'s signature.

* Hint:

* On the Initiator side:

* - Get a set of signers required from the participants who are not the node

* - - [ourIdentity] will give you the identity of the node you are operating
as

* - Use [initateFlow] to get a set of [FlowSession] objects

*

- - Using [state.participants] as a base to determine the sessions needed
is recommended. [participants] is on

* - - the state interface so it 1is guaranteed to to exist where [lender] and
[borrower] are not.
* - - Hint: [ourIdentity] will give you the [Party] that represents the

identity of the initiating flow.
* - Use [subFlow] to start the [CollectSignaturesFlow]
- Pass it a [SignedTransaction] object and [FlowSession] set
* - It will return a [SignedTransaction] with all the required signatures
* - The subflow performs the signature checking and transaction verification

for you
*

*

* On the Responder side:
* - Create a subclass of [SignTransactionFlow]
*

- Override [SignTransactionFlow.checkTransaction] to impose any constraints

on the transaction
*

* Using this flow you abstract away all the back-and-forth communication

19

required for parties to sign a
* transaction.
*/
@Test
fun flowReturnsTransactionSignedByBothParties () {
val lender = a.info.chooselIdentityAndCert () .party
val borrower = b.info.chooseIdentityAndCert () .party
val iou = IOUState (10.POUNDS, lender, borrower)
val flow = IOUIssueFlow (iou)
val future = a.startFlow (flow)
mockNetwork . runNetwork ()
val stx = future.getOrThrow()
stx.verifyRequiredSignatures ()

I0UIssueFlow.kt

class IOUIssueFlow(val state: IOUState) : FlowLogic<SignedTransaction> () {
@Suspendable
override fun call(): SignedTransaction {

val notaryParty = serviceHub.networkMapCache.notaryIdentities.first()
val command = Command (IOUContract.Commands.Issue(),
state.participants.map { it.owningKey })
val builder = TransactionBuilder (notaryParty)
builder.addCommand (command)
builder.addOutputState (state, IOUContract.IOU_CONTRACT_ ID)
builder.verify (serviceHub)
val signedTx = serviceHub.signInitialTransaction (builder)
val sessions = (state.participants - ourIdentity)
.map { initiateFlow(it) }.toSet()
val allSignedTx = subFlow (CollectSignaturesFlow (
signedTx, sessions))
return allSignedTx

Run tests -> Tests passed: 20 of 20

I0UIssueFlowTests.kt -> uncomment test 4:

/**

* Task 4.

* Now we need to store the finished [SignedTransaction] in both counter-party
vaults.

* TODO: Amend the [IOUIssueFlow] by adding a call to [FinalityFlow].

* Hint:

* - As mentioned above, use the [FinalityFlow] to ensure the transaction 1is
recorded in both [Party] vaults.

* - Do not use the [BroadcastTransactionFlow]!

* - The [FinalityFlow] determines if the transaction requires notarisation or
not.

* — We don't need the notary's signature as this 1s an issuance transaction
without a timestamp. There are no

* inputs in the transaction that could be double spent! If we added a

timestamp to this transaction then we

20

*

authority.
*/
@Test
fun flowRecordsTheSameTransactionInBothPartyVaults () {
val lender = a.info.chooselIdentityAndCert () .party
val borrower = b.info.chooseIdentityAndCert () .party
val iou = IOUState (10.POUNDS, lender, borrower)
val flow = IOUIssueFlow (iou)
val future = a.startFlow (flow)
mockNetwork . runNetwork ()
val stx = future.getOrThrow()
println("Signed transaction hash: ${stx.id}")
listOf(a, b).map {
it.services.validatedTransactions.getTransaction (stx.id)
}.forEach {
val txHash = (it as SignedTransaction) .id
println("$txHash == ${stx.id}")
assertEquals (stx.id, txHash)

I0UIssueFlow.kt

class IOUIssueFlow(val state: IOUState) : FlowLogic<SignedTransaction> ()
@Suspendable
override fun call(): SignedTransaction {

would require the notary's signature as notaries act as a timestamping

{

val notaryParty = serviceHub.networkMapCache.notaryIdentities.first ()

val command = Command (IOUContract.Commands.Issue(),
state.participants.map { it.owningKey })
val builder = TransactionBuilder (notaryParty)
builder.addCommand (command)
builder.addOutputState (state, IOUContract.IOU_CONTRACT_ ID)
builder.verify (serviceHub)
val signedTx = serviceHub.signInitialTransaction (builder)
val sessions = (state.participants - ourIdentity)
.map { initiateFlow(it) }.toSet()
val allSignedTx = subFlow(CollectSignaturesFlow (signedTx,
return subFlow (FinalityFlow (allSignedTx))

Run tests -> Tests passed: 21 of 21

sessions))

21

