
1

C++

Extensions

-exception handling

-templates

OOP

-data abstraction

-data hiding

-inheritance

-polymorphism

C

-universal

-efficient

-close to the machine

-portable

Intro to C++

 Session 1- C++ & OOP Overview

By Coding-Bootcamps.com

 ■ DEVELOPMENT AND PROPERTIES OF C++

Characteristics

2

Characteristics of C++

C++ is not a purely object-oriented language but a hybrid that contains the functionality of the C

programming language. This means that you have all the features that are available in C:

 universally usable modular programs
 efficient, close to the machine programming
 portable programs for various platforms.

The large quantities of existing C source code can also be used in C++ programs.

C++ supports the concepts of object-oriented programming (or OOP for short), which are:

 data abstraction, that is, the creation of classes to describe objects
 data encapsulation for controlled access to object data
 inheritance by creating derived classes (including multiple derived classes)
 polymorphism (Greek for multiform), that is, the implementation of instructions that can have varying

effects during program execution.

Various language elements were added to C++, such as references, templates, and exception handling. Even

though these elements of the language are not strictly object-oriented programming features, they are

important for efficient program implementation.

3

function3

data2

function2

data1

function1

object1 object2

Properties Properties

Capacities Capacities

 ■ OBJECT-ORIENTED PROGRAMMING

Traditional concept

Object-oriented concept

4

Traditional Procedural Programming

In traditional, procedural programming, data and functions (subroutines, procedures) are kept separate from

the data they process. This has a significant effect on the way a pro- gram handles data:

 the programmer must ensure that data are initialized with suitable values before use and that suitable
data are passed to a function when it is called

 if the data representation is changed, e.g. if a record is extended, the corresponding functions must also
be modified.

Both of these points can lead to errors and neither support low program maintenance requirements.

Objects

Object-oriented programming shifts the focus of attention to the objects, that is, to the aspects on

which the problem is centered. A program designed to maintain bank accounts would work with data

such as balances, credit limits, transfers, interest calculations, and so on. An object representing an

account in a program will have properties and capacities that are important for account management.

OOP objects combine data (properties) and functions (capacities). A class defines a certain object type

by defining both the properties and the capacities of the objects of that type. Objects communicate by

sending each other “messages,” which in turn activate another object’s capacities.

Advantages of OOP

Object-oriented programming offers several major advantages to software development:

 reduced susceptibility to errors: an object controls access to its own data. More specifically, an object
can reject erroneous access attempts

 easy re-use: objects maintain themselves and can therefore be used as building blocks for other
programs

 low maintenance requirement: an object type can modify its own internal data representation without
requiring changes to the application.

5

 ■ DEVELOPING A C++ PROGRAM

Translating a C++ program

The following three steps are required to create and translate a C++ program:

1. First, a text editor is used to save the C++ program in a text file. In other words, the source code is saved
to a source file. In larger projects the programmer will normally use modular programming. This means
that the source code will be stored in several source files that are edited and translated separately.

2. The source file is put through a compiler for translation. If everything works as planned, an object file
made up of machine code is created. The object file is also referred to as a module.

3. Finally, the linker combines the object file with other modules to form an executable file. These
further modules contain functions from standard libraries or parts of the program that have been
compiled previously.

It is important to use the correct file extension for the source file’s name. Although the file extension

depends on the compiler you use, the most commonly found file extensions are .cpp and .cc.

Prior to compilation, header files, which are also referred to as include files, can be copied to the

source file. Header files are text files containing information needed by var ious source files, for

example, type definitions or declarations of variables and functions. Header files can have the file

extension .h, but they may not have any file extension.

The C++ standard library contains predefined and standardized functions that are available for any

compiler.

Modern compilers normally offer an integrated software development environment, which combines

the steps mentioned previously into a single task. A graphical user interface is available for editing,

compiling, linking, and running the application. Moreover, additional tools, such as a debugger, can be

launched.

In addition to error messages, the compiler will also issue warnings. A warning does not indicate a

syntax error but merely draws your attention to a possible error in the pro- gram’s logic, such as the

use of a non-initialized variable.

6

#include <iostream>

using namespace std;

int main()

{

cout << "Enjoy yourself with C++!" << endl;

return 0;

}

■ A BEGINNER’S C++ PROGRAM

Sample program

Screen output

Enjoy yourself with C++!

7

Function name

Type of function

Beginning of

function

int main()

{

.

.

What the program does

(statements)

.

.

}

Function block

End of function

Structure of function main()

8

A C++ program is made up of objects with their accompanying member functions and global functions,

which do not belong to any single particular class. Each function fulfills its own particular task and can

also call other functions. You can create functions yourself or use ready-made functions from the

standard library. You will always need to write the global function main() yourself since it has a special

role to play; in fact it is the main program.

The short programming example on the opposite page demonstrates two of the most important

elements of a C++ program. The program contains only the function main() and displays a message.

The first line begins with the number symbol, #, which indicates that the line is intended for the

preprocessor. The preprocessor is just one step in the first translation phase and no object code is

created at this time. You can type

#include <filename>

to have the preprocessor copy the quoted file to this position in the source code. This allows the program

access to all the information contained in the header file. The header file iostream comprises conventions

for input and output streams. The word stream indicates that the information involved will be treated as

a flow of data.

Predefined names in C++ are to be found in the std (standard) namespace. The using directive allows

direct access to the names of the std namespace.

Program execution begins with the first instruction in function main(), and this is why each C++ program

must have a main function. The structure of the function is shown on the opposite page. Apart from the

fact that the name cannot be changed, this function’s structure is not different from that of any other

C++ function.

In our example the function main() contains two statements. The first statement

cout << "Enjoy yourself with C++!" << endl;

outputs the text string Enjoy yourself with C++! on the screen. The name cout (console output)

designates an object responsible for output.

The two less-than symbols, <<, indicate that characters are being “pushed” to the out- put stream. Finally

endl (end of line) causes a line feed. The statement

return 0;

terminates the function main() and also the program, returning a value of 0 as an exit code to the calling

program. It is standard practice to use the exit code 0 to indicate that a program has terminated correctly.

Note that statements are followed by a semicolon. By the way, the shortest statement comprises only a

semicolon and does nothing.

9

/**

A program with some functions and comments

**/

#include <iostream>

using namespace std;

void line(), message(); // Prototypes

int main()

{

cout << "Hello! The program starts in main()."

<< endl;

line();

message();

line();

cout << "At the end of main()." << endl;

return 0;

}

void line()

{

// To draw a line.

cout << "--------------------------------" << endl;

}

void message() // To display a message.

{

 cout << "In function message()." << endl;
}

cout << "In function message()." << endl;

} ■ STRUCTURE OF SIMPLE C++ PROGRAMS

A C++ program with several functions

10

Screen output

Hello! The program starts in main().

In function message().

At the end of main().

The above example shows the structure of a C++ program containing multiple functions. In C++,

functions do not need to be defined in any fixed order. For example, you could define the function

message() first, followed by the function line(), and finally the main() function.

However, it is more common to start with the main() function as this function controls the program flow.

In other words, main() calls functions that have yet to be defined. This is made possible by supplying

the compiler with a function prototype that includes all the information the compiler needs.

This example also introduces comments. Strings enclosed in /* . . . */ or starting with // are interpreted as

comments.

EXAMPLES:

/* I can cover

several lines */

// I can cover just one line

In single-line comments the compiler ignores any characters following the // signs up to the end of the line.

Comments that cover several lines are useful when troubleshooting, as you can use them to mask

complete sections of your program. Both comment types can be used to comment out the other type.

As to the layout of source files, the compiler parses each source file sequentially, breaking the contents

down into tokens, such as function names and operators. Tokens can be separated by any number of

whitespace characters, that is, by spaces, tabs, or new line characters. The order of the source code is

important but it is not important to adhere to a specific layout, such as organizing your code in rows and

columns. For example:

void message

(){ cout <<

"In function message()." <<

endl;}

11

might be difficult to read, but it is a correct definition of the function message().

Preprocessor directives are one exception to the layout rule since they always occupy a single line. The

number sign, #, at the beginning of a line can be preceded only by a space or a tab character.

To improve the legibility of your C++ programs you should adopt a consistent style, using indentation and

blank lines to reflect the structure of your program. In addition, make generous use of comments.

