Intro to Database Design
By Coding-Bootcamps.com

Contents

Session 1- Before the Advent of Database Systems

Session 2- Fundamental Concepts

Session 3- Characteristics and Benefits of a Database

Session 4- Types of Data Models

Session 5- Data Modeling

Session 6- Classification of Database Management Systems

Session 7- The Relational Data Model

Session 8- The Entity Relationship Data Model

Session 9- Integrity Rules and Constraints

Session 10- ER Modeling

Next Classes

Coding-Bootcamps.com

Session 1

Session 1- Before the Advent of Database
Systems

The way in which computers manage data has come a long way over the last few decades.
Today’s users take for granted the many benefits found in a database system. However, it
wasn’t that long ago that computers relied on a much less elegant and costly approach to data
management called the file-based system.

File-based System

One way to keep information on a computer is to store it in permanent files. A company
system has a number of application programs; each of them is designed to manipulate data
files. These application programs have been written at the request of the users in the organi-
zation. New applications are added to the system as the need arises. The system just de-
scribed is called the file-based system.

Consider a traditional banking system that uses the file-based system to manage the organ-
ization’s data shown in Figure 1.1. As we can see, there are different departments in the bank.
Each has its own applications that manage and manipulate different data files. For banking
systems, the programs may be used to debit or credit an account, find the balance of an ac-
count, add a new mortgage loan and generate monthly statements.

i 44

Personnel Loan Department
Account Department

Dep artment
—_
Employees I | Installment
mﬁfge
I : I :
Checking Saving
Accounts Accounts

Coding-Bootcamps.com

Disadvantages of the file-based approach

Using the file-based system to keep organizational information has a number of disad-
vantages. Listed below are five examples.

Data redundancy

Often, within an organization, files and applications are created by different programmers
from various departments over long periods of time. This can lead to data redundancy, a situ-
ation that occurs in a database when a field needs to be updated in more than one table. This
practice can lead to several problems such as:

e Inconsistency in data format

e The same information being kept in several different places (files)

e Data inconsistency, a situation where various copies of the same data are conflicting,
wastes storage space and duplicates effort

Data isolation

Data isolation is a property that determines when and how changes made by one operation
become visible to other concurrent users and systems. This issue occurs in a concurrency sit-
uation. This is a problem because:

e Itis difficult for new applications to retrieve the appropriate data, which might be
stored in various files.

Integrity problems

Problem with data integrity is another disadvantage of using a file-based system. It refers
to the maintenance and assurance that the data in a database are correct and con-
sistent. Factors to consider when addressing this issue are:
e Data values must satisfy certain consistency constraints that are specified in the appli-
cation programs.
e Itis difficult to make changes to the application programs in order to enforce new
constraints.

Security problems

Security can be a problem with a file-based approach because:

e There are constraints regarding accessing privileges.

e Application requirements are added to the system in an ad-hoc manner so it is difficult
to enforce constraints.

Concurrency access

Concurrency is the ability of the database to allow multiple users access to the same rec-
ord without adversely affecting transaction processing. A file-based system must manage, or
prevent, concurrency by the application programs. Typically, in a file-based system, when an

Coding-Bootcamps.com

application opens a file, that file is locked. This means that no one else has access to the file
at the same time.

In database systems, concurrency is managed thus allowing multiple users access to the
same record. This is an important difference between database and file-based systems.

Database Approach

The difficulties that arise from using the file-based system have prompted the develop-
ment of a new approach in managing large amounts of organizational information called the
database approach.

Databases and database technology play an important role in most areas where computers
are used, including business, education and medicine. To understand the fundamentals of da-
tabase systems, we will start by introducing some basic concepts in this area.

Role of databases in business

Everybody uses a database in some way, even if it is just to store information about their
friends and family. That data might be written down or stored in a computer by using a word-
processing program or it could be saved in a spreadsheet. However, the best way to store data
is by using database management software. This is a powerful software tool that allows you
to store, manipulate and retrieve data in a variety of different ways.

Most companies keep track of customer information by storing it in a database. This data
may include customers, employees, products, orders or anything else that assists the business
with its operations.

The meaning of data

Data are factual information such as measurements or statistics about objects and con-
cepts. We use data for discussions or as part of a calculation. Data can be a person, a place,
an event, an action or any one of a number of things. A single fact is an element of data, or a
data element.

If data are information and information is what we are in the business of working with,
you can start to see where you might be storing it. Data can be stored in:

e Filing cabinets

e Spreadsheets

e Folders
e Ledgers
e Lists

e Piles of papers on your desk

Coding-Bootcamps.com

All of these items store information, and so too does a database. Because of the mechani-
cal nature of databases, they have terrific power to manage and process the information they
hold. This can make the information they house much more useful for your work.

With this understanding of data, we can start to see how a tool with the capacity to store a
collection of data and organize it, conduct a rapid search, retrieve and process, might make a
difference to how we can use data. This course and the sessions that follow are all about
managing information.

Key Terms

concurrency: the ability of the database to allow multiple users access to the same record
without adversely affecting transaction processing

data element: a single factor piece of information
data inconsistency: a situation where various copies of the same data are conflicting

data isolation: a property that determines when and how changes made by one operation be-
come visible to other concurrent users and systems

data integrity: refers to the maintenance and assurance that the data in a database are correct
and consistent

data redundancy: a situation that occurs in a database when a field needs to be updated in
more than one table

database approach: allows the management of large amounts of organizational information

database management software: a powerful software tool that allows you to store, manipu-
late and retrieve data in a variety of ways

file-based system: an application program designed to manipulate data files
Exercises

1. Discuss each of the following terms:
1. data
2. field
3. record
4. file

What is data redundancy?

Discuss the disadvantages of file-based systems.

Explain the difference between data and information.

Use Figure 1.2 (below) to answer the following questions.
1. In the table, how many records does the file contain?
2. How many fields are there per record?

gk own

Coding-Bootcamps.com

3. What problem would you encounter if you wanted to produce a listing by city?
4. How would you solve this problem by altering the file structure?

PROJECT_MANAGER I MANAGER_PHONE I MANAGER_ADDRESS | PROJECT_BID_PRICE |
Holly B. Parker 904-338-3416 3334 Lee Rd., Gainesville, FL 37123 $16,833,460.00
Jane D. Grant 615-898-9909 218 Clark Blvd., Nashville, TN 36362 $12,500,000.00
George F. Dorts 615-227-1245 124 River Dr., Franklin, TN 29185 $32,512,420.00
Holly B. Parker 904-338-3416 3334 Lee Rd., Gainesville, FL 37123 $21,563,234.00
George F. Dorts 615-227-1245 124 River Dr., Franklin, TN 23185 $10,314,545.00
Holly B. Parker 904-338-3416 3334 Lee Rd., Gainesville, FL 37123 $25,559,999.00
William K. Moor 904-445-2719 216 Morton Rd., Stetson, FL 30155 $56,850,000.00

F_igure 1.2. Table for exercise #5

[[[11 I+

Coding-Bootcamps.com

http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2014/03/Ch1-Exercises-Figure1-1-e1409149351851.jpg

Session 2

Session 2- Fundamental Concepts

What Is a Database?

A database is a shared collection of related data used to support the activities of a particu-
lar organization. A database can be viewed as a repository of data that is defined once and
then accessed by various users as shown in Figure 2.1.

Tserl

eex 3

Database Properties

A database has the following properties:

e Itisarepresentation of some aspect of the real world or a collection of data elements
(facts) representing real-world information.

e A database is logical, coherent and internally consistent.

e A database is designed, built and populated with data for a specific purpose.

e Each data item is stored in a field.

e A combination of fields makes up a table. For example, each field in an employee ta-
ble contains data about an individual employee.

A database can contain many tables. For example, a membership system may contain an
address table and an individual member table as shown in Figure 2.2. Members of Science

Coding-Bootcamps.com

World are individuals, group homes, businesses and corporations who have an active mem-
bership to Science World. Memberships can be purchased for a one- or two-year period, and
then renewed for another one- or two-year period.

Membership
ID 100755 EXPIRY DATE |201503 Prev Exp 201402 Stat |A |Cat |FP
Name |Mrs. Minnie Mouse Res 222-2222 <
Addres 8982 Rodent Lane
City 'West Vancouver Prov [BC Country |Canada
Notes
Cards 2013/08/09 | # Members 8| #Years 1
+ FirstName ~ LastName | YYMM ~ G~ |BARCODE -~ V-~ DATE 2 TIME | e
Mickey Mouse 0000 M 10000001 4 20130810 10:12:29 y
Minnie Mouse 0000 F 10000002 4 20130810 10:12:29 y =
).Iight}: Mouse 0000 M 10000003 4 20130810 10:12:29 y
Door Mouse 0000 F 10000004 4 20130810 10:12:29 y
Tom Mouse 0000 M 10000005 4 20130810 10:12:29 y
King Rat 0000 M 10000006 4 20130810 10:12:29 y
Man Mouse 0000 M 10000007 4 20130810 10:12:29 y
Moose Mouse 0000 M 10000008 4 20130810 10:12:29 y
* v
Record: M 4 1of1 | » » »ii | W Na Filter | Search

In Figure 2.2, Minnie Mouse renewed the family membership with Science World. Everyone
with membership ID#100755 lives at 8932 Rodent Lane. The individual members are Mick-
ey Mouse, Minnie Mouse, Mighty Mouse, Door Mouse, Tom Mouse, King Rat, Man Mouse
and Moose Mouse.

Database Management System

A database management system (DBMS) is a collection of programs that enables users to
create and maintain databases and control all access to them. The primary goal of a DBMS is
to provide an environment that is both convenient and efficient for users to retrieve and store
information.

With the database approach, we can have the traditional banking system as shown in Fig-
ure 2.3. In this bank example, a DBMS is used by the Personnel Department, the Account
Department and the Loan Department to access the shared corporate database.

Coding-Bootcamps.com

d

Personnel Dept.
L l

Shared Database
with

—

Account Dept.

Loan Dept

Key Terms
data elements: facts that represent real-world information

database: a shared collection of related data used to support the activities of a particular or-
ganization

database management system (DBMS): a collection of programs that enables users to cre-
ate and maintain databases and control all access to them

table: a combination of fields

Exercises
1. What is a database management system (DBMS)?
2. What are the properties of a DBMS?

3. Provide three examples of a real-world database (e.g., the library contains a database
of books).

Coding-Bootcamps.com

10

Session 3

Session 3- Characteristics and Benefits of
a Database

Managing information means taking care of it so that it works for us and is useful for the
tasks we perform. By using a DBMS, the information we collect and add to its database is no
longer subject to accidental disorganization. It becomes more accessible and integrated with
the rest of our work. Managing information using a database allows us to become strategic
users of the data we have.

We often need to access and re-sort data for various uses. These may include:
e Creating mailing lists
e Writing management reports
e Generating lists of selected news stories
e Identifying various client needs

The processing power of a database allows it to manipulate the data it houses, so it can:
e Sort
e Match
e Link
e Aggregate
e Skip fields
e Calculate
e Arrange

Because of the versatility of databases, we find them powering all sorts of projects. A da-
tabase can be linked to:

e A website that is capturing registered users

e A client-tracking application for social service organizations

e A medical record system for a health care facility

e Your personal address course in your email client

e A collection of word-processed documents

e A system that issues airline reservations

Characteristics and Benefits of a Database

There are a number of characteristics that distinguish the database approach from the file-
based system or approach. This Session describes the benefits (and features) of the database
system.

Coding-Bootcamps.com

11

Self-describing nature of a database system

A database system is referred to as self-describing because it not only contains the data-
base itself, but also metadata which defines and describes the data and relationships between
tables in the database. This information is used by the DBMS software or database users if
needed. This separation of data and information about the data makes a database system total-
ly different from the traditional file-based system in which the data definition is part of the
application programs.

Insulation between program and data

In the file-based system, the structure of the data files is defined in the application pro-
grams so if a user wants to change the structure of a file, all the programs that access that file
might need to be changed as well.

On the other hand, in the database approach, the data structure is stored in the system cata-
logue and not in the programs. Therefore, one change is all that is needed to change the struc-
ture of a file. This insulation between the programs and data is also called program-data inde-
pendence.

Support for multiple views of data

A database supports multiple views of data. A view is a subset of the database, which is
defined and dedicated for particular users of the system. Multiple users in the system might
have different views of the system. Each view might contain only the data of interest to a user
or group of users.

Sharing of data and multiuser system

Current database systems are designed for multiple users. That is, they allow many users
to access the same database at the same time. This access is achieved through features called
concurrency control strategies. These strategies ensure that the data accessed are always cor-
rect and that data integrity is maintained.

The design of modern multiuser database systems is a great improvement from those in
the past which restricted usage to one person at a time.

Control of data redundancy

In the database approach, ideally, each data item is stored in only one place in the data-
base. In some cases, data redundancy still exists to improve system performance, but such
redundancy is controlled by application programming and kept to minimum by introducing as
little redundancy as possible when designing the database.

Data sharing

Coding-Bootcamps.com

12

The integration of all the data, for an organization, within a database system has many ad-
vantages. First, it allows for data sharing among employees and others who have access to the
system. Second, it gives users the ability to generate more information from a given amount
of data than would be possible without the integration.

Enforcement of integrity constraints

Database management systems must provide the ability to define and enforce certain con-
straints to ensure that users enter valid information and maintain data integrity. A database
constraint is a restriction or rule that dictates what can be entered or edited in a table such as
a postal code using a certain format or adding a valid city in the City field.

There are many types of database constraints. Data type, for example, determines the sort
of data permitted in a field, for example numbers only. Data uniqueness such as the primary
key ensures that no duplicates are entered. Constraints can be simple (field based) or complex
(programming).

Restriction of unauthorized access

Not all users of a database system will have the same accessing privileges. For example,
one user might have read-only access (i.e., the ability to read a file but not make changes),
while another might have read and write privileges, which is the ability to both read and
modify a file. For this reason, a database management system should provide a security sub-
system to create and control different types of user accounts and restrict unauthorized access.

Data independence

Another advantage of a database management system is how it allows for data independ-
ence. In other words, the system data descriptions or data describing data (metadata) are sepa-
rated from the application programs. This is possible because changes to the data structure
are handled by the database management system and are not embedded in the program itself.

Transaction processing

A database management system must include concurrency control subsystems. This fea-
ture ensures that data remains consistent and valid during transaction processing even if sev-
eral users update the same information.

Provision for multiple views of data

By its very nature, a DBMS permits many users to have access to its database either indi-
vidually or simultaneously. It is not important for users to be aware of how and where the da-
ta they access is stored

Backup and recovery facilities

Coding-Bootcamps.com

13

Backup and recovery are methods that allow you to protect your data from loss. The data-
base system provides a separate process, from that of a network backup, for backing up and
recovering data. If a hard drive fails and the database stored on the hard drive is not accessi-
ble, the only way to recover the database is from a backup.

If a computer system fails in the middle of a complex update process, the recovery subsys-
tem is responsible for making sure that the database is restored to its original state. These are
two more benefits of a database management system.

Key Terms

concurrency control strategies: features of a database that allow several users access to the
same data item at the same time

data type: determines the sort of data permitted in a field, for example numbers only
data uniqueness: ensures that no duplicates are entered

database constraint: a restriction that determines what is allowed to be entered or edited in a
table

metadata: defines and describes the data and relationships between tables in the database
read and write privileges: the ability to both read and modify a file

read-only access: the ability to read a file but not make changes

self-describing: a database system is referred to as self-describing because it not only con-
tains the database itself, but also metadata which defines and describes the data and relation-
ships between tables in the database

view: a subset of the database

Exercises

How is a DBMS distinguished from a file-based system?

What is data independence and why is it important?

What is the purpose of managing information?

Discuss the uses of databases in a business environment.
What is metadata?

agrownE

Coding-Bootcamps.com

14

Session 4

Session 4- Types of Data Models

High-level Conceptual Data Models

High-level conceptual data models provide concepts for presenting data in ways that are
close to the way people perceive data. A typical example is the entity relationship model,
which uses main concepts like entities, attributes and relationships. An entity represents a re-
al-world object such as an employee or a project. The entity has attributes that represent
properties such as an employee’s name, address and birthdate. A relationship represents an
association among entities; for example, an employee works on many projects. A relationship
exists between the employee and each project.

Record-based Logical Data Models

Record-based logical data models provide concepts users can understand but are not too
far from the way data is stored in the computer. Three well-known data models of this type
are relational data models, network data models and hierarchical data models.

The relational model represents data as relations, or tables. For example, in the membership
system at Science World, each membership has many members (see Figure 2.2 in Session 2).
The membership identifier, expiry date and address information are fields in the membership.
The members are individuals such as Mickey, Minnie, Mighty, Door, Tom, King, Man and
Moose. Each record is said to be an instance of the membership table.

The network model represents data as record types. This model also represents a limited type
of one to many relationship called a set type, as shown in the below Figure 4.1.

—— SUPPLIEES
O-SUFFLIER. |
WORKS_IN MANAGES
OFFERS
0-ITEM
DEET: [* ITEMS
CARRIES i
E-ITEM
ENTEIES
E-ORDER
ORDEES
FLACED-E
CUSTOMERS

Coding-Bootcamps.com

The hierarchical model represents data as a hierarchical tree structure. Each branch of the
hierarchy represents a number of related records. Figure 4.2 shows this schema in hierar-
chical model notation.

DEFT: CUSTOMERS SUFPFLIERS

EMPS MR ERZ DRDLRS OlJl'[RS
ENTJ’hFTERS EHTLJES

Key Terms

hierarchical model: represents data as a hierarchical tree structure
instance: a record within a table

network model: represents data as record types

relation: another term for table

relational model: represents data as relations or tables

set type: a limited type of one to many relationship

Exercises

What is a data model?

What is a high-level conceptual data model?

What is an entity? An attribute? A relationship?
List and briefly describe the common record-based logical data models.

el A

Coding-Bootcamps.com

15

16

Session 5

Session 5- Data Modeling

Data modeling is the first step in the process of database design. This step is sometimes
considered to be a high-level and abstract design phase, also referred to as conceptual design.
The aim of this phase is to describe:

e The data contained in the database (e.g., entities: students, lecturers, courses, subjects)

e The relationships between data items (e.g., students are supervised by lecturers; lec-
turers teach courses)

e The constraints on data (e.g., student number has exactly eight digits; a subject has
four or six units of credit only)

In the second step, the data items, the relationships and the constraints are all expressed
using the concepts provided by the high-level data model. Because these concepts do not in-
clude the implementation details, the result of the data modeling process is a (semi) formal
representation of the database structure. This result is quite easy to understand so it is used as
reference to make sure that all the user’s requirements are met.

The third step is database design. During this step, we might have two sub-steps: one
called database logical design, which defines a database in a data model of a specific DBMS,
and another called database physical design, which defines the internal database storage
structure, file organization or indexing techniques. These two sub-steps are database imple-
mentation and operations/user interfaces building steps.

In the database design phases, data are represented using a certain data model. The data
model is a collection of concepts or notations for describing data, data relationships, data se-
mantics and data constraints. Most data models also include a set of basic operations for ma-
nipulating data in the database.

Degrees of Data Abstraction

In this section we will look at the database design process in terms of specificity. Just as
any design starts at a high level and proceeds to an ever-increasing level of detail, so does
database design. For example, when building a home, you start with how many bedrooms and
bathrooms the home will have, whether it will be on one level or multiple levels, etc. The
next step is to get an architect to design the home from a more structured perspective. This
level gets more detailed with respect to actual room sizes, how the home will be wired, where
the plumbing fixtures will be placed, etc. The last step is to hire a contractor to build the
home. That’s looking at the design from a high level of abstraction to an increasing level
of detail.

Coding-Bootcamps.com

17

The database design is very much like that. It starts with users identifying the business
rules; then the database designers and analysts create the database design; and then the data-
base administrator implements the design using a DBMS.

The following subsections summarize the models in order of decreasing level
of abstraction.

External models

e Represent the user’s view of the database
e Contain multiple different external views
e Are closely related to the real world as perceived by each user

Conceptual models

e Provide flexible data-structuring capabilities
e Present a “community view”: the logical structure of the entire database
e Contain data stored in the database
e Show relationships among data including:
o Constraints
o Semantic information (e.g., business rules)
o Security and integrity information

e Consider a database as a collection of entities (objects) of various kinds

e Are the basis for identification and high-level description of main data objects; they
avoid details

e Are database independent regardless of the database you will be using

Internal models

The three best-known models of this kind are the relational data model, the network data
model and the hierarchical data model. These internal models:

e Consider a database as a collection of fixed-size records

e Are closer to the physical level or file structure

e Are arepresentation of the database as seen by the DBMS.

e Require the designer to match the conceptual model’s characteristics and constraints
to those of the selected implementation model

¢ Involve mapping the entities in the conceptual model to the tables in the relational
model

Physical models

e Are the physical representation of the database
e Have the lowest level of abstractions
e Are how the data is stored; they deal with

o Run-time performance

Coding-Bootcamps.com

18

o Storage utilization and compression
o File organization and access methods
o Data encryption

e Are the physical level — managed by the operating system (OS)
e Provide concepts that describe the details of how data are stored in the computer’s
memory

Data Abstraction Layer

In a pictorial view, you can see how the different models work together. Let’s look at this
from the highest level, the external model.

The external model is the end user’s view of the data. Typically a database is an enterprise
system that serves the needs of multiple departments. However, one department is not inter-
ested in seeing other departments’ data (e.g., the human resources (HR) department does not
care to view the sales department’s data). Therefore, one user view will differ from another.

The external model requires that the designer subdivide a set of requirements and con-
straints into functional modules that can be examined within the framework of their external
models (e.g., human resources versus sales).

As a data designer, you need to understand all the data so that you can build an enterprise-
wide database. Based on the needs of various departments, the conceptual model is the first
model created.

At this stage, the conceptual model is independent of both software and hardware. It does
not depend on the DBMS software used to implement the model. It does not depend on the
hardware used in the implementation of the model. Changes in either hardware or DBMS
software have no effect on the database design at the conceptual level.

Once a DBMS is selected, you can then implement it. This is the internal model. Here you
create all the tables, constraints, keys, rules, etc. This is often referred to as the logical de-
sign.

The physical model is simply the way the data is stored on disk. Each database vendor has
its own way of storing the data.

Coding-Bootcamps.com

% % End users

19

iew 1 Wiew?

Exterral [View) leve

Wiewn

Fxternal-Conceptal \ \ /

Mlapping

Concephiial Level

Conceptual-Intemal

Mlapping
Internal (Fhysical) level
Schemas

A schema is an overall description of a database, and it is usually represented by the entity
relationship diagram (ERD). There are many subschemas that represent external models and
thus display external views of the data. Below is a list of items to consider during the design

process of a database.
e External schemas: there are multiple

e Multiple subschemas: these display multiple external views of the data
e Conceptual schema: there is only one. This schema includes data items, relationships

and constraints, all represented in an ERD.
e Physical schema: there is only one

Logical and Physical Data Independence

Data independence refers to the immunity of user applications to changes made in the def-

inition and organization of data. Data abstractions expose only those items that are important

or pertinent to the user. Complexity is hidden from the database user.

Coding-Bootcamps.com

20

Data independence and operation independence together form the feature of data abstrac-
tion. There are two types of data independence: logical and physical.

Logical data independence

A logical schema is a conceptual design of the database done on paper or a whiteboard,
much like architectural drawings for a house. The ability to change the logical sche-
ma, without changing the external schema or user view, is called logical data independence.
For example, the addition or removal of new entities, attributes or relationships to this con-
ceptual schema should be possible without having to change existing external schemas or re-
write existing application programs.

In other words, changes to the logical schema (e.qg., alterations to the structure of the data-
base like adding a column or other tables) should not affect the function of the application
(external views).

Physical data independence

Physical data independence refers to the immunity of the internal model to changes in the
physical model. The logical schema stays unchanged even though changes are made to file
organization or storage structures, storage devices or indexing strategy.

Physical data independence deals with hiding the details of the storage structure from user
applications. The applications should not be involved with these issues, since there is no dif-
ference in the operation carried out against the data.

Key Terms
conceptual model: the logical structure of the entire database
conceptual schema: another term for logical schema

data independence: the immunity of user applications to changes made in the definition and
organization of data

data model: a collection of concepts or notations for describing data, data relationships, data
semantics and data constraints

data modeling: the first step in the process of database design

database logical design: defines a database in a data model of a specific database manage-
ment system

database physical design: defines the internal database storage structure, file organization or
indexing techniques

Coding-Bootcamps.com

21

entity relationship diagram (ERD): a data model describing the database showing tables,
attributes and relationships

external model: represents the user’s view of the database
external schema: user view
internal model: a representation of the database as seen by the DBMS

logical data independence: the ability to change the logical schema without changing the
external schema

logical design: where you create all the tables, constraints, keys, rules, etc.

logical schema: a conceptual design of the database done on paper or a whiteboard, much
like architectural drawings for a house

operating system (OS): manages the physical level of the physical model

physical data independence: the immunity of the internal model to changes in the physical
model

physical model: the physical representation of the database
schema: an overall description of a database
Exercises

1. Describe the purpose of a conceptual design.

2. How is a conceptual design different from a logical design?
3. What is an external model?

4. What is a conceptual model?

5. What is an internal model?

6. What is a physical model?

7. Which model does the database administrator work with?
8. Which model does the end user work with?

9. What is logical data independence?

10. What is physical data independence?

Coding-Bootcamps.com

22

Session 6

Session 6- Classification of Database
Management Systems

Database management systems can be classified based on several criteria, such as the data
model, user numbers and database distribution, all described below.

Classification Based on Data Model

The most popular data model in use today is the relational data model. Well-known
DBMSs like Oracle, MS SQL Server, DB2 and MySQL support this model. Other traditional
models, such as hierarchical data models and network data models, are still used in industry
mainly on mainframe platforms. However, they are not commonly used due to their complex-
ity. These are all referred to as traditional models because they preceded the relational model.

In recent years, the newer object-oriented data models were introduced. This model is a
database management system in which information is represented in the form of objects as
used in object-oriented programming. Object-oriented databases are different from relational
databases, which are table-oriented. Object-oriented database management systems
(OODBMS) combine database capabilities with object-oriented programming language capa-
bilities.

The object-oriented models have not caught on as expected so are not in widespread use.
Some examples of object-oriented DBMSs are 02, ObjectStore and Jasmine.

In addition to discussed databases, recently two new forms of data models are invented
and are gaining popularity among data scientists and web developers: Graph Database and
No-SQL Database. Check out our below courses to learn more:

e Introduction to No-SQL Database Design

e Learn Graph Database Design by Examples

Classification Based on User Numbers

A DBMS can be classification based on the number of users it supports. It can be a single-
user database system, which supports one user at a time, or a multiuser database system,
which supports multiple users concurrently.

Classification Based on Database Distribution

Coding-Bootcamps.com

https://learn.coding-bootcamps.com/p/learn-how-to-design-no-sql-databases-by-examples
https://learn.coding-bootcamps.com/p/learn-how-to-develop-graph-databases

23

There are four main distribution systems for database systems and these, in turn, can be
used to classify the DBMS.

Centralized systems

With a centralized database system, the DBMS and database are stored at a single site that
is used by several other systems too. This is illustrated in below Figure (6.1).

Central Computer

Workstations
or
Terminals

In the early 1980s, many Canadian libraries used the GEAC 8000 to convert their manual
card catalogues to machine-readable centralized catalogue systems. Each course catalogue
had a barcode field similar to those on supermarket products.

Distributed database system

In a distributed database system, the actual database and the DBMS software are distribut-
ed from various sites that are connected by a computer network, as shown in Figure 6.2. Cur-
rently, such distributed database systems are used in blockchain. Check out our Intro to

Coding-Bootcamps.com

https://learn.coding-bootcamps.com/p/introduction-to-blockchain-technology

Blockchain course to learn more.

Coding-Bootcamps.com

24

25

Homogeneous distributed database systems

Homogeneous distributed database systems use the same DBMS software from multiple
sites. Data exchange between these various sites can be handled easily. For example, library
information systems by the same vendor, such as Geac Computer Corporation, use the same
DBMS software which allows easy data exchange between the various Geac library sites.

Heterogeneous distributed database systems

In a heterogeneous distributed database system, different sites might use different DBMS
software, but there is additional common software to support data exchange between these
sites. For example, the various library database systems use the same machine-readable cata-
loguing (MARC) format to support library record data exchange.

Key Terms

centralized database system: the DBMS and database are stored at a single site that is used
by several other systems too

distributed database system: the actual database and the DBMS software are distributed
from various sites that are connected by a computer network

heterogeneous distributed database system: different sites might use different DBMS
software, but there is additional common software to support data exchange between these
sites

homogeneous distributed database systems: use the same DBMS software at multiple sites

multiuser database system: a database management system which supports multiple users
concurrently

object-oriented data model: a database management system in which information is repre-
sented in the form of objects as used in object-oriented programming

single-user database system: a database management system which supports one user at a
time

traditional models: data models that preceded the relational model
Exercises
1. Provide three examples of the most popular relational databases used.
2. What is the difference between centralized and distributed database systems?

3. What is the difference between homogenous distributed database systems and hetero-
geneous distributed database systems?

Coding-Bootcamps.com

26

Session 7

Session 7- The Relational Data Model

The relational data model was introduced by C. F. Codd in 1970. Currently, it is the most
widely used data model.

The relational model has provided the basis for:

e Research on the theory of data/relationship/constraint

e Numerous database design methodologies

e The standard database access language called structured query language (SQL)
e Almost all modern commercial database management systems

The relational data model describes the world as “a collection of inter-related relations (or
tables).”

Fundamental Concepts in the Relational Data Model

Relation

A relation, also known as a table or file, is a subset of the Cartesian product of a list of
domains characterized by a name. And within a table, each row represents a group of related
data values. A row, or record, is also known as a tuple. The columns in a table is a field and is
also referred to as an attribute. You can also think of it this way: an attribute is used to define
the record and a record contains a set of attributes.

The steps below outline the logic between a relation and its domains.
1. Given n domains are denoted by D1, D2, ... Dn

2. Andr is a relation defined on these domains

3. Then r € D1xD2x...xDn

Table

A database is composed of multiple tables and each table holds the data. Figure 7.1 shows
a database that contains three tables.

Coding-Bootcamps.com

27

Figure 7.1. Database with three tables.

Column

A database stores pieces of information or facts in an organized way. Understanding how
to use and get the most out of databases requires us to understand that method of organiza-
tion.

The principal storage units are called columns or fields or attributes. These house the basic
components of data into which your content can be broken down. When deciding which
fields to create, you need to think generically about your information, for example, drawing
out the common components of the information that you will store in the database and avoid-
ing the specifics that distinguish one item from another.

Look at the example of an ID card in Figure 7.2 to see the relationship between fields and
their data.

Field Name Data
First Name Isabelle
Family Name Whelan
Nationality British
Salary 109,900
Date of Birth 15 September 1983
Marital Status Single
Shift Mon, Wed
Place of issue Addis Ababa
Valid until 17 December 2003

Figure 7.2. Example of an ID card

Domain

Coding-Bootcamps.com

28

A domain is the original sets of atomic values used to model data. By atomic value, we
mean that each value in the domain is indivisible as far as the relational model is concerned.
For example:

e The domain of Marital Status has a set of possibilities: Married, Single, Divorced.

e The domain of Shift has the set of all possible days: {Mon, Tue, Wed...}.

e The domain of Salary is the set of all floating-point numbers greater than 0 and less
than 200,000.

e The domain of First Name is the set of character strings that represents names of peo-

ple.

In summary, a domain is a set of acceptable values that a column is allowed to contain.
This is based on various properties and the data type for the column. We will discuss data
types in another Session.

Records

Just as the content of any one document or item needs to be broken down into its constitu-
ent bits of data for storage in the fields, the link between them also needs to be available so
that they can be reconstituted into their whole form. Records allow us to do this. Records
contain fields that are related, such as a customer or an employee. As noted earlier, a tuple is
another term used for record.

Records and fields form the basis of all databases. A simple table gives us the clearest pic-
ture of how records and fields work together in a database storage project.

Record 10 [Publate |Author Title
1126/07/1963 |8 Pint Right

Figure 7.3. Example of a simple

The simple table example in Figure 7.3 shows us how fields can hold a range of different
sorts of data. This one has:
e A Record ID field: this is an ordinal number; its data type is an integer.
e A PubDate field: this is displayed as day/month/year; its data type is date.
e An Author field: this is displayed as Initial. Surname; its data type is text.
o ATitle field text: free text can be entered here.

You can command the database to sift through its data and organize it in a particular way.
For example, you can request that a selection of records be limited by date: 1. all before a
given date, 2. all after a given date or 3. all between two given dates. Similarly, you can
choose to have records sorted by date. Because the field, or record, containing the data is set

Coding-Bootcamps.com

29

up as a Date field, the database reads the information in the Date field not just as numbers
separated by slashes, but rather, as dates that must be ordered according to a calendar sys-
tem.

Degree

The degree is the number of attributes in a table. In our example in Figure 7.3, the degree
is4.

Properties of a Table

e A table has a name that is distinct from all other tables in the database.
e There are no duplicate rows; each row is distinct.
e Entries in columns are atomic. The table does not contain repeating groups or multi-
valued attributes.
e Entries from columns are from the same domain based on their data type including:
o number (numeric, integer, float, smallint,...)
o character (string)
o date
o logical (true or false)

e Operations combining different data types are disallowed.
e Each attribute has a distinct name.

e The sequence of columns is insignificant.

e The sequence of rows is insignificant.

Key Terms

atomic value: each value in the domain is indivisible as far as the relational model is con-
cerned

attribute: principle storage unit in a database
column: see attribute
degree: number of attributes in a table

domain: the original sets of atomic values used to model data; a set of acceptable values that
a column is allowed to contain

field: see attribute
file:see relation

record: contains fields that are related; see tuple

Coding-Bootcamps.com

30

relation: a subset of the Cartesian product of a list of domains characterized by a name; the
technical term for table or file

row: see tuple

structured query language (SQL): the standard database access language

table: see relation

tuple: a technical term for row or record

Terminology Key

Several of the terms used in this chapter are synonymous. In addition to the Key Terms

above, please refer to Table 7.1 below. The terms in the Alternative 1 column are most com-
monly used.

Formal Terms Alternative 1 Altermative
(Codd) 2

Relation Table File

Tuple Row Record
Attribute Column Field

Table 7.1. Terms and their synonyms

Exercises

Use Table 7.2 to answer questions 1-4.

1. Using correct terminology, identify and describe all the components in Table 7.2.

2. What is the possible domain for field EmpJobCode?

3. How many records are shown?

4. How many attributes are shown?

5. List the properties of a table.
EMPLOYEE
EMPID EMPLNAME EMPINIT EMPFNAME EMPJOBCODE
123455 Friedman A. Robert 12
123456 Olanski D. Delbert 18
123457 Fontein G. Juliette 15
123458 Cruazona X. Maria 18

Table 7.2. Table for exercise questions

Coding-Bootcamps.com

31

Session 8

Session 8- The Entity Relationship Data
Model

The entity relationship (ER) data model has existed for many years. It is well suited to da-
ta modeling for use with databases because it is fairly abstract and is easy to discuss and ex-
plain. ER models are readily translated to relations. ER models, also called an ER schema,
are represented by ER diagrams.

ER modeling is based on two concepts:
e Entities, defined as tables that hold specific information (data)
e Relationships, defined as the associations or interactions between entities

Here is an example of how these two concepts might be combined in an ER data mod-
el: Prof. Ba (entity) teaches (relationship) the Database Systems course (entity).

For the rest of this Session, we will use a sample database called the COMPANY database
to illustrate the concepts of the ER model. This database contains information about employ-
ees, departments and projects. Important points to note include:

e There are several departments in the company. Each department has a unique identifi-
cation, a name, location of the office and a particular employee who manages the de-
partment.

e A department controls a number of projects, each of which has a unique name, a
unique number and a budget.

e Each employee has a name, identification number, address, salary and birthdate. An
employee is assigned to one department but can join in several projects. We need to
record the start date of the employee in each project. We also need to know the direct
supervisor of each employee.

e We want to keep track of the dependents for each employee. Each dependent has a
name, birthdate and relationship with the employee.

Entity, Entity Set and Entity Type

An entity is an object in the real world with an independent existence that can be differen-
tiated from other objects. An entity might be

e An object with physical existence (e.g., a lecturer, a student, a car)
e An object with conceptual existence (e.g., a course, a job, a position)

Entities can be classified based on their strength. An entity is considered weak if its tables
are existence dependent.

Coding-Bootcamps.com

e That is, it cannot exist without a relationship with another entity
e Its primary key is derived from the primary key of the parent entity
o The Spouse table, in the COMPANY database, is a weak entity because its
primary key is dependent on the Employee table. Without a corresponding

employee record, the spouse record would not exist.

An entity is considered strong if it can exist apart from all of its related entities.
e Kernels are strong entities.
e A table without a foreign key or a table that contains a foreign key that can contain

nulls is a strong entity

Another term to know is entity type which defines a collection of similar entities.

32

An entity set is a collection of entities of an entity type at a particular point of time. In an
entity relationship diagram (ERD), an entity type is represented by a name in a box. For ex-
ample, in Figure 8.1, the entity type is EMPLOYEE.

Entity set

" €l

"

Rapresentin
ER diagram

—_—

EMPLOYEE

Figure 8.1. ERD with entity type EMPLOYEE

Coding-Bootcamps.com

33

Existence dependency

An entity’s existence is dependent on the existence of the related entity. It is existence-
dependent if it has a mandatory foreign key (i.e., a foreign key attribute that cannot be null).
For example, in the COMPANY database, a Spouse entity is existence -dependent on the
Employee entity.

Kinds of Entities

You should also be familiar with different kinds of entities including independent entities,
dependent entities and characteristic entities. These are described below.

Independent entities

Independent entities, also referred to as kernels, are the backbone of the database. They
are what other tables are based on. Kernels have the following characteristics:

e They are the building blocks of a database.

e The primary key may be simple or composite.

e The primary key is not a foreign key.

e They do not depend on another entity for their existence.

If we refer back to our COMPANY database, examples of an independent entity include
the Customer table, Employee table or Product table.

Dependent entities

Dependent entities, also referred to as derived entities, depend on other tables for their
meaning. These entities have the following characteristics:
e Dependent entities are used to connect two kernels together.
e They are said to be existence dependent on two or more tables.
e Many to many relationships become associative tables with at least two foreign keys.
e They may contain other attributes.
e The foreign key identifies each associated table.
e There are three options for the primary key:
1. Use a composite of foreign keys of associated tables if unique
2. Use a composite of foreign keys and a qualifying column
3. Create a new simple primary key

Characteristic entities

Characteristic entities provide more information about another table. These entities have
the following characteristics:

e They represent multivalued attributes.

e They describe other entities.

Coding-Bootcamps.com

e They typically have a one to many relationship.
e The foreign key is used to further identify the characterized table.
e Options for primary key are as follows:

1. Use a composite of foreign key plus a qualifying column

34

2. Create a new simple primary key. In the COMPANY database, these might in-

clude:

e Employee (EID, Name, Address, Age, Salary) — EID is the simple primary

key.

e EmployeePhone (EID, Phone) — EID is part of a composite primary key. Here,

EID is also a foreign key.

Attributes

Each entity is described by a set of attributes (e.g., Employee = (Name, Address, Birthdate

(Age), Salary).

Each attribute has a name, and is associated with an entity and a domain of legal values.
However, the information about attribute domain is not presented on the ERD.

In the entity relationship diagram, shown in Figure 8.2, each attribute is represented by an

oval with a name inside.

r Address l:; C'__" Blnhdate—__. >

Coding-Bootcamps.com

35

Types of Attributes

There are a few types of attributes you need to be familiar with. Some of these are to be
left as is, but some need to be adjusted to facilitate representation in the relational model.
This first section will discuss the types of attributes. Later on we will discuss fixing the at-
tributes to fit correctly into the relational model.

Simple attributes

Simple attributes are those drawn from the atomic value domains; they are also called sin-
gle-valued attributes. In the COMPANY database, an example of this would be: Name =
{John} ; Age = {23}

Composite attributes
Composite attributes are those that consist of a hierarchy of attributes. Using our database

example, and shown in Figure 8.3, Address may consist of Number, Street and Suburb. So
this would be written as — Address = {59 + ‘Meek Street’ + ‘Kingsford’}

Sample attnbute

«_(A Numbes

Coding-Bootcamps.com

36

Multivalued attributes

Multivalued attributes are attributes that have a set of values for each entity. An example
of a multivalued attribute from the COMPANY database, as seen in Figure 8.4, are the de-
grees of an employee: BSc, MIT, PhD.

Multivalued attribute

¢~ Degrees S
N EMPLOYEE

~Bithdate >
(_ Addess > (™ 8>

Derived attributes

Derived attributes are attributes that contain values calculated from other attributes. An
example of this can be seen in Figure 8.5. Age can be derived from the attribute Birthdate. In
this situation, Birthdate is called a stored attribute, which is physically saved to the database.

Denvad attribute

¢ Bundate O

(:: “Address =

Coding-Bootcamps.com

37

Keys

An important constraint on an entity is the key. The key is an attribute or a group of attrib-
utes whose values can be used to uniquely identify an individual entity in an entity set.

Types of Keys

There are several types of keys. These are described below.

Candidate key

A candidate key is a simple or composite key that is unique and minimal. It is unique be-
cause no two rows in a table may have the same value at any time. It is minimal because eve-
ry column is necessary in order to attain uniqueness.

From our COMPANY database example, if the entity is Employee(EID, First Name, Last
Name, SIN, Address, Phone, BirthDate, Salary, DepartmentID), possible candidate keys are:
e EID,SIN
e First Name and Last Name — assuming there is no one else in the company with
the same name
e Last Name and DepartmentID — assuming two people with the same last name
don’t work in the same department

Composite key
A composite key is composed of two or more attributes, but it must be minimal.

Using the example from the candidate key section, possible composite keys are:

e First Name and Last Name — assuming there is no one else in the company with the
same name

e Last Name and Department ID — assuming two people with the same last name don’t
work in the same department

Primary key

The primary key is a candidate key that is selected by the database designer to be used as
an identifying mechanism for the whole entity set. It must uniquely identify tuples in a table
and not be null. The primary key is indicated in the ER model by underlining the attribute.

e A candidate key is selected by the designer to uniquely identify tuples in a table. It
must not be null.

e A key is chosen by the database designer to be used as an identifying mechanism for
the whole entity set. This is referred to as the primary key. This key is indicated by
underlining the attribute in the ER model.

In the following example, EID is the primary key:

Coding-Bootcamps.com

38

Employee(EID, First Name, Last Name, SIN, Address, Phone, BirthDate, Salary,
DepartmentID)

Secondary key

A secondary key is an attribute used strictly for retrieval purposes (can be composite), for
example: Phone and Last Name.

Alternate key

Alternate keys are all candidate keys not chosen as the primary key.

Foreign key

A foreign key (FK) is an attribute in a table that references the primary key in another table
OR it can be null. Both foreign and primary keys must be of the same data type.

In the COMPANY database example below, DepartmentID is the foreign key:

Employee(EID, First Name, Last Name, SIN, Address, Phone, BirthDate, Salary,
DepartmentID)

Nulls

A null is a special symbol, independent of data type, which means either unknown or in-

applicable. It does not mean zero or blank. Features of null include:
No data entry
Not permitted in the primary key
Should be avoided in other attributes
Can represent

o An unknown attribute value

o A known, but missing, attribute value

o A “not applicable” condition

Can create problems when functions such as COUNT, AVERAGE and SUM are used
Can create logical problems when relational tables are linked

NOTE: The result of a comparison operation is null when either argument is null. The re-
sult of an arithmetic operation is null when either argument is null (except functions
that ignore nulls).

Example of how null can be used

Use the Salary table (Salary_tbl) in Figure 8.6 to follow an example of how null can be
used.

Coding-Bootcamps.com

39

Salary_tbl
emp# | jobName salary | commission
E10 Sales 12500 32090
El1 Null 25000 8000
E12 Sales 44000 0
E13 Sales 44000 Null

Figure 8.6. Salary table for null example

To begin, find all employees (emp#) in Sales (under the jobName column) whose salary
plus commission are greater than 30,000.
SELECT emp# FROM Salary _tbl
WHERE jobName = Sales AND
(commission + salary) > 30,000 —> E10 and E12

This result does not include E13 because of the null value in the commission column. To
ensure that the row with the null value is included, we need to look at the individual fields.
By adding commission and salary for employee E13, the result will be a null value. The solu-
tion is shown below.

SELECT emp# FROM Salary _tbl

WHERE jobName = Sales AND

(commission > 30000 OR

salary > 30000 OR

(commission + salary) > 30,000 —>E10 and E12 and E13

Relationships

Relationships are the glue that holds the tables together. They are used to connect related
information between tables.

Relationship strength is based on how the primary key of a related entity is defined. A
weak, or non-identifying, relationship exists if the primary key of the related entity does not
contain a primary key component of the parent entity. Company database examples include:

e Customer(CustID, CustName)
e Order(OrderlID, CustID, Date)

A strong, or identifying, relationship exists when the primary key of the related entity con-
tains the primary key component of the parent entity. Examples include:

e Course(CrsCode, DeptCode, Description)

e Class(CrsCode, Section, ClassTime...)

Types of Relationships

Below are descriptions of the various types of relationships.

Coding-Bootcamps.com

40

One to many (1:M) relationship

A one to many (1:M) relationship should be the norm in any relational database design and
is found in all relational database environments. For example, one department has many em-
ployees. Figure 8.7 shows the relationship of one of these employees to the department.

_ Name 7 Blrdowe Nume)

One to one (1:1) relationship

A one to one (1:1) relationship is the relationship of one entity to only one other entity,
and vice versa. It should be rare in any relational database design. In fact, it could indicate
that two entities actually belong in the same table.

An example from the COMPANY database is one employee is associated with one
spouse, and one spouse is associated with one employee.

Many to many (M:N) relationships

For a many to many relationship, consider the following points:

e |t cannot be implemented as such in the relational model.

e It can be changed into two 1:M relationships.

e It can be implemented by breaking up to produce a set of 1:M relationships.

e Itinvolves the implementation of a composite entity.

e Creates two or more 1:M relationships.

e The composite entity table must contain at least the primary keys of the original ta-
bles.

e The linking table contains multiple occurrences of the foreign key values.

e Additional attributes may be assigned as needed.

e |t can avoid problems inherent in an M:N relationship by creating a composite entity
or bridge entity. For example, an employee can work on many projects OR a project
can have many employees working on it, depending on the business rules. Or, a stu-
dent can have many classes and a class can hold many students.

Figure 8.8 shows another aspect of the M:N relationship where an employee has different
start dates for different projects. Therefore, we need a JOIN table that contains the EID, Code
and StartDate.

Coding-Bootcamps.com

41

Teane Tireare SauDate Natee
o ‘ “
e 1) .-’/7.'
> <>
— N
Salary “mp O

Relional Scherma
EMPLOYEE (EID), Nane, Addrwrs, Birlbalae. Salaey
FROJECT (Code, Name, Budget)
JOINGELD, Code Sxtlate

Example of mapping an M:N binary relationship type
e For each M:N binary relationship, identify two relations.
e A and B represent two entity types participating in R.
e Create a new relation S to represent R.
e S needs to contain the PKs of A and B. These together can be the PK in the S table
OR these together with another simple attribute in the new table R can be the PK.
e The combination of the primary keys (A and B) will make the primary key of S.

Unary relationship (recursive)

A unary relationship, also called recursive, is one in which a relationship exists between
occurrences of the same entity set. In this relationship, the primary and foreign keys are the
same, but they represent two entities with different roles. See Figure 8.9 for an example.

For some entities in a unary relationship, a separate column can be created that refers to
the primary key of the same entity set.

(__Name _:"' i':!;mM'ali__;i

Relational Schema

EMPLOYEE (EID, Name, Address, Buthdate, Salary, Super-SE10)

Ternary Relationships

A ternary relationship is a relationship type that involves many to many relationships be-
tween three tables.

Refer to Figure 8.10 for an example of mapping a ternary relationship type. Note n-ary
means multiple tables in a relationship. (Remember, N = many.)
e For each n-ary (> 2) relationship, create a new relation to represent the relationship.

Coding-Bootcamps.com

42

e The primary key of the new relation is a combination of the primary keys of the par-
ticipating entities that hold the N (many) side.
e In most cases of an n-ary relationship, all the participating entities hold a many side.

Coding-Bootcamps.com

43

Key Terms
alternate key: all candidate keys not chosen as the primary key

candidate key: a simple or composite key that is unique (no two rows in a table may have the
same value) and minimal (every column is necessary)

characteristic entities: entities that provide more information about another table
composite attributes: attributes that consist of a hierarchy of attributes
composite key: composed of two or more attributes, but it must be minimal
dependent entities: these entities depend on other tables for their meaning
derived attributes: attributes that contain values calculated from other attributes
derived entities: see dependent entities

EID: employee identification (ID)

entity: a thing or object in the real world with an independent existence that can be differen-
tiated from other objects

entity relationship (ER) data model: also called an ER schema, are represented by ER dia-
grams. These are well suited to data modeling for use with databases.

entity relationship schema: see entity relationship data model
entity set: a collection of entities of an entity type at a point of time
entity type: a collection of similar entities

foreign key (FK): an attribute in a table that references the primary key in another table OR
it can be null

independent entity: as the building blocks of a database, these entities are what other tables
are based on

kernel: see independent entity

key: an attribute or group of attributes whose values can be used to uniquely identify an indi-
vidual entity in an entity set

multivalued attributes: attributes that have a set of values for each entity

n-ary: multiple tables in a relationship

Coding-Bootcamps.com

44

null: a special symbol, independent of data type, which means either unknown or inapplica-
ble; it does not mean zero or blank

recursive relationship: see unary relationship

relationships: the associations or interactions between entities; used to connect related in-
formation between tables

relationship strength: based on how the primary key of a related entity is defined
secondary key an attribute used strictly for retrieval purposes

simple attributes: drawn from the atomic value domains

SIN: social insurance number

single-valued attributes: see simple attributes

stored attribute: saved physically to the database

ternary relationship: a relationship type that involves many to many relationships between
three tables.

unary relationship: one in which a relationship exists between occurrences of the same enti-
ty set.

Exercises
1. What two concepts are ER modeling based on?

2. The database in Figure 8.11 is composed of two tables. Use this figure to answer
questions 2.1 to 2.5.

DIRECTOR

DIRNUM DIRNAME DIRDOB

100 J.Broadway 01/08/39

101 J.Namath 11/12/48

102 W.Blake 06/15/44

PLAY

PLAYNO PLAYNAME DIRNUM

1001 Cat on a cold bare roof 102

1002 Hold the mayo, pass the 101
bread

1003 | never promised you coffee 102

1004 Silly putty goes to Texas 100

1005 See no sound, hear no sight 101

1006 Starstruck in Biloxi 102

1007 Stranger in parrot ice 101

Figure 8.11. Director and Play tables for question 2

Coding-Bootcamps.com

Identify the primary key for each table.

Identify the foreign key in the PLAY table.

Identify the candidate keys in both tables.

Draw the ER model.

Does the PLAY table exhibit referential integrity? Why or why not?

BEARE I A

3. Deflne the following terms (you may need to use the Internet for some of these):

schema

host language

data sublanguage

data definition language

unary relation

foreign key

virtual relation

connectivity

composite key

linking table

. The RRE Trucking Company database includes the three tables in Figure 8.12. Use
Figure 8.12 to answer questions 4.1 to 4.5.

TRUCK

45

TNUM BASENUM TYPENUM TMILES TBOUGHT TSERIAL
1001 501 1 5900.2 11/08/90 aa-125
1002 502 2 64523.9 11/08/90 ac-213
1003 501 2 32116.0 09/29/91 ac-215
1004 2 3256.9 01/14/92 ac-315
BASE

BASENUM BASECITY BASESTATE BASEPHON BASEMGR

501 Dallas X 893-9870 J. Jones

502 New York NY 234-7689 K. Lee

TYPE

TYPENUM TYPEDESC

1 single box, double axle

2 tandem trailer, single axle

Figure 8.12. Truck, Base and Type tables for question 4

=

Identify the primary and foreign key(s) for each table.

2. Does the TRUCK table exhibit entity and referential integrity? Why or why
not? Explain your answer.

What kind of relationship exists between the TRUCK and BASE tables?
How many entities does the TRUCK table contain?

Identify the TRUCK table candidate key(s).

ok w

Coding-Bootcamps.com

46

Customer

CustID CustName AccntNo.

100 Joe Smith 010839

101 Andy Blake 111248

102 Sue Brown 061544

BookOrders

OrderiD Title CustiD Price
1001 The Dark Tower 102 12.00
1002 Incubus Dreams 101 19.99
1003 Song of Susannah 102 23.00
1004 The Time Traveler's Wife 100 21.00
1005 The Dark Tower 101 12.00
1006 Tanequil 102 15.00
1007 Song of Susannah 101 23.00

Figure 8.13. Customer and BookOrders tables for question 5

5. Suppose you are using the database in Figure 8.13, composed of the two tables. Use
Figure 8.13 to answer questions 5.1 to 5.6.

Identify the primary key in each table.

Identify the foreign key in the BookOrders table.

Avre there any candidate keys in either table?

Draw the ER model.

Does the BookOrders table exhibit referential integrity? Why or why not?

Do the tables contain redundant data? If so which table(s) and what is the re-

dundant data?

6. Looking at the student table in Figure 8.14, list all the possible candidate keys. Why
did you select these?

carwnE

student
¥ student_id

student_fname
student_Iname
tel_no

fax_no

gender
date_of_birth
student_desc
preferred_language
passport_program

company_id

Figure 8.14. Student table for question 6,

Coding-Bootcamps.com

instructor
¥ instructor_id

instructor_name
salary
commission
mentor_id
date_hired

SN

<

course

9 course_id
title
duration
cost
subject_id
attendance
¢ offering_id
¥ student_id
O——¢=
evaluation
K amount_paid
=0
offering
9 offering_id
course_id
instructor_id
site_id
start_date

max_no_students

?

student

student_id
student_fname
student_Iname
tel_no

fax_no

gender
date_of_birth
student_desc
preferred_language
passport_program

company_id

Figure 8.15. ERD of school database for questions 7-10,

Use the ERD of a school database in Figure 8.15 to answer questions 7 to 10.

7.

Identity all the kernels and dependent and characteristic entities in the ERD.

8. Which of the tables contribute to weak relationships? Strong relationships?

9. Looking at each of the tables in the school database in Figure 8.15, which attribute
could have a NULL value? Why?

10. Which of the tables were created as a result of many to many relationships?

Coding-Bootcamps.com

48

Session 9

Session 9- Integrity Rules and Constraints

Constraints are a very important feature in a relational model. In fact, the relational model
supports the well-defined theory of constraints on attributes or tables. Constraints are useful
because they allow a designer to specify the semantics of data in the database. Constraints are
the rules that force DBMSs to check that data satisfies the semantics.

Domain Integrity

Domain restricts the values of attributes in the relation and is a constraint of the relational
model. However, there are real-world semantics for data that cannot be specified if used only
with domain constraints. We need more specific ways to state what data values are or are not
allowed and which format is suitable for an attribute. For example, the Employee ID (EID)
must be unique or the employee Birthdate is in the range [Jan 1, 1950, Jan 1, 2000]. Such in-
formation is provided in logical statements called integrity constraints.

There are several kinds of integrity constraints, described below.
Entity integrity

To ensure entity integrity, it is required that every table have a primary key. Neither the
PK nor any part of it can contain null values. This is because null values for the primary key
mean we cannot identify some rows. For example, in the EMPLOYEE table, Phone cannot be
a primary key since some people may not have a telephone.

Referential integrity

Referential integrity requires that a foreign key must have a matching primary key or it
must be null. This constraint is specified between two tables (parent and child); it maintains
the correspondence between rows in these tables. It means the reference from a row in one
table to another table must be valid.

Examples of referential integrity constraint in the Customer/Order database of the Compa-
ny:

e Customer(CustID, CustName)

e Order(OrderlD, CustID, OrderDate)

To ensure that there are no orphan records, we need to enforce referential integrity. An or-
phan record is one whose foreign key FK value is not found in the corresponding entity — the
entity where the PK is located. Recall that a typical join is between a PK and FK.

Coding-Bootcamps.com

49

The referential integrity constraint states that the customer ID (CustID) in the Order table
must match a valid CustID in the Customer table. Most relational databases have declarative
referential integrity. In other words, when the tables are created the referential integrity con-
straints are set up.

Here is another example from a Course/Class database:
e Course(CrsCode, DeptCode, Description)
e Class(CrsCode, Section, ClassTime)

The referential integrity constraint states that CrsCode in the Class table must match a val-
id CrsCode in the Course table. In this situation, it’s not enough that the CrsCode and Section
in the Class table make up the PK, we must also enforce referential integrity.

When setting up referential integrity it is important that the PK and FK have the same data
types and come from the same domain, otherwise the relational database management system
(RDBMS) will not allow the join. RDBMS is a popular database system that is based on the
relational model introduced by E. F. Codd of IBM’s San Jose Research Laboratory. Relation-
al database systems are easier to use and understand than other database systems.

Referential integrity in Microsoft Access

In Microsoft (MS) Access, referential integrity is set up by joining the PK in the Customer
table to the CustID in the Order table. See Figure 9.1 for a view of how this is done on the
Edit Relationships screen in MS Access.

P = y |
Edit Relationships “‘Lﬁ
Table/Query: Related Table/Query: Create
— Cancel
CustiD |* | CustiD
20in Type..
7 Enforce Referental Integrity Crente ew..
Cascade Update Related Fislds
Cascade Delete Related Records
Relatonship Type: One-To-Many
| = = |

Coding-Bootcamps.com

50

Referential integrity using Transact-SQL (MS SQL Server)

When using Transact-SQL, the referential integrity is set when creating the Order table
with the FK. Listed below are the statements showing the FK in the Order table referencing
the PK in the Customer table.

CREATE TABLE Customer

(CustID INTEGER PRIMARY KEY,

CustName CHAR(35))

CREATE TABLE Orders

(OrderID INTEGER PRIMARY KEY,

CustID INTEGER REFERENCES Customer(CustID),
OrderDate DATETIME)

Foreign key rules

Additional foreign key rules may be added when setting referential integrity, such as what
to do with the child rows (in the Orders table) when the record with the PK, part of the parent
(Customer), is deleted or changed (updated). For example, the Edit Relationships window in
MS Access (see Figure 9.1) shows two additional options for FK rules: Cascade Update and
Cascade Delete. If these are not selected, the system will prevent the deletion or update of PK
values in the parent table (Customer table) if a child record exists. The child record is any
record with a matching PK.

In some databases, an additional option exists when selecting the Delete option called Set
to Null. In this is chosen, the PK row is deleted, but the FK in the child table is set to NULL.
Though this creates an orphan row, it is acceptable.

Enterprise Constraints

Enterprise constraints — sometimes referred to as semantic constraints — are additional
rules specified by users or database administrators and can be based on multiple tables.

Here are some examples.

e A class can have a maximum of 30 students.

e A teacher can teach a maximum of four classes per semester.

e Anemployee cannot take part in more than five projects.

e The salary of an employee cannot exceed the salary of the employee’s manager.

Business Rules

Business rules are obtained from users when gathering requirements. The requirements-
gathering process is very important, and its results should be verified by the user before the
database design is built. If the business rules are incorrect, the design will be incorrect, and
ultimately the application built will not function as expected by the users.

Coding-Bootcamps.com

51

Some examples of business rules are:

e A teacher can teach many students.

e A class can have a maximum of 35 students.

e A course can be taught many times, but by only one instructor.
e Not all teachers teach classes.

Cardinality and connectivity

Business rules are used to determine cardinality and connectivity. Cardinality describes the
relationship between two data tables by expressing the minimum and maximum number of
entity occurrences associated with one occurrence of a related entity. In Figure 9.2, you can
see that cardinality is represented by the innermost markings on the relationship symbol. In
this figure, the cardinality is O (zero) on the right and 1 (one) on the left.

/e ™~
Connectivity

Teacher Class
PK | TeacheriD PK ClassiD
~H O<€

PK.FK1 | TeacherlD
PK StartDate

Lname
Fname

Cardinality

\ J

Figure 9.2. Position of connectivity and cardinality on a relationship symbol

The outermost symbol of the relationship symbol, on the other hand, represents the connec-
tivity between the two tables. Connectivity is the relationship between two tables, e.g., one to
one or one to many. The only time it is zero is when the FK can be null. When it comes to
participation, there are three options to the relationship between these entities: either 0 (zero),
1 (one) or many. In Figure 9.2, for example, the connectivity is 1 (one) on the outer, left-hand
side of this line and many on the outer, right-hand side.

Figure 9.3. shows the symbol that represents a one to many relationship.

; €

Figure 9.3.

In Figure 9.4, both inner (representing cardinality) and outer (representing connectivity)
markers are shown. The left side of this symbol is read as minimum 1 and maximum 1. On
the right side, it is read as: minimum 1 and maximum many.

H S

Figure 9.4.

Coding-Bootcamps.com

52

Relationship Types

The line that connects two tables, in an ERD, indicates the relationship type between the ta-
bles: either identifying or non-identifying. An identifying relationship will have a solid line
(where the PK contains the FK). A non-identifying relationship is indicated by a broken
line and does not contain the FK in the PK. See the section in Chapter 8 that discusses weak
and strong relationships for more explanation.

- R

o
| PK | CustiD | PK | OrderiD

‘ FK1 | CustiD
OrdDate

LName
FName

Non-ldentifying Relationship

P— [—
customer Order ‘
PK | CustiD PK OrderlD
L 09 px i1 | Cusud
LName
FName

OrdDate

H Identifying Relationship p

Figure 9.5. Identifying and non-identifying relationship

Optional relationships

In an optional relationship, the FK can be null or the parent table does not need to have a cor-
responding child table occurrence. The symbol, shown in Figure 9.6, illustrates one type with
a zero and three prongs (indicating many) which is interpreted as zero OR many.

O€

Figure 9.6.
For example, if you look at the Order table on the right-hand side of Figure 9.7, you’ll notice

that a customer doesn’t need to place an order to be a customer. In other words, the many
side is optional.

Coding-Bootcamps.com

53

record must be

assocated with 2 maumum of one A customes can hiave many orders

Customer
CUATOmer 1
X CustlD

An order record mist have a valid A customer does not need to have

K| Ordedd
PKFKI | CustiD

IName
EName

l}
| OrdDate
|

customer and i1 must NOT be Null an order to be a customer

\ o

Figure 9.7. Example usage of a zero to many optional relationship symbol

The relationship symbol in Figure 9.7 can also be read as follows:
o Left side: The order entity must contain a minimum of one related entity in the Cus-
tomer table and a maximum of one related entity.
« Right side: A customer can place a minimum of zero orders or a maximum of many
orders.

Figure 9.8 shows another type of optional relationship symbol with a zero and one, meaning
zero OR one. The one side is optional.

O+

Figure 9.8.

Figure 9.9 gives an example of how a zero to one symbol might be used.

r ™

Employee l Spouse
PK |EmolD | PKFK1 | EmpID

IName SpouselName
Fname SpouseFname

\ J

Figure 9.9. Example usage of a zero to one optional relationship symbol

Mandatory relationships

In a mandatory relationship, one entity occurrence requires a corresponding entity occur-
rence. The symbol for this relationship shows one and only one as shown in Figure 9.10. The
one side is mandatory.

Coding-Bootcamps.com

—

Figure 9.10

See Figure 9.11 for an example of how the one and only one mandatory symbol is used.

’

A SpOUSE eCone must Contain 3

macdmum of 3 walld Ergloyes ©

Employee
PK | EmpID

-

— T

LName
Frame

A Sponae record must contaim &
mirimum of 1 valid Employes 1D

\

1 Spouse
L | PR | LmalD
t -

i
L]
SpoutelName
Spousel name

An emplioyee in the Employee tabde must
appear in the Spouse table at least once

-\

>

Figure 9.11. Example of a one and only one mandatory relationship symbol,

Figure 9.12 illustrates what a one to many relationship symbol looks like where the many

side is mandatory.

-

Figure 9.12.

Refer to Figure 9.13 for an example of how the one to many symbol may be used.

-~

O s led with 4 manr

d rant be
av mum of
Order /
PK | QrderlD

OrderDetall
PKFK1 | OrderlD
K PK BroductiD

\

CustiD
OrdDate
Detal rocord mu v

Qty
Price
must have 3 vabd
NOT
An orde Muest have it led

0ast L product

o

»

54

Figure 9.13. Example of a one to many mandatory relationship symbol
So far we have seen that the innermost side of a relationship symbol (on the left-side of the

symbol in Figure 9.14) can have a 0 (zero) cardinality and a connectivity of many (shown on
the right-side of the symbol in Figure 9.14), or one (not shown).

O€

Figure 9.14

Coding-Bootcamps.com

55

However, it cannot have a connectivity of O (zero), as displayed in Figure 9.15. The connec-
tivity can only be 1.

+O

Figure 9.15.

The connectivity symbols show maximums. So if you think about it logically, if the connec-
tivity symbol on the left side shows 0 (zero), then there would be no connection between the
tables.

The way to read a relationship symbol, such as the one in Figure 9.16, is as follows.

e The CustID in the Order table must also be found in the Customer table a minimum of
0 and a maximum of 1 times.
e The 0 means that the CustID in the Order table may be null.
e The left-most 1 (right before the 0 representing connectivity) says that if there is a
CustID in the Order table, it can only be in the Customer table once.
e When you see the 0 symbol for cardinality, you can assume two things: T
1. the FK in the Order table allows nulls, and
2. the FK is not part of the PK since PKs must not contain null values.

a R

Order

customer |
PK | CustiD PK OrderlD

FK1 CustiD
OrdDate

. »
Figure 9.16. The relationship between a Customer table and an Order table

Key Terms

business rules: obtained from users when gathering requirements and are used to determine
cardinality

cardinality: expresses the minimum and maximum number of entity occurrences associated
with one occurrence of a related entity

connectivity: the relationship between two tables, e.g., one to one or one to many

constraints: the rules that force DBMSs to check that data satisfies the semantics

Coding-Bootcamps.com

56

entity integrity: requires that every table have a primary key; neither the primary key, nor
any part of it, can contain null values

identifying relationship: where the primary key contains the foreign key; indicated in an
ERD by a solid line

integrity constraints: logical statements that state what data values are or are not allowed
and which format is suitable for an attribute

mandatory relationship: one entity occurrence requires a corresponding entity occurrence.

non-identifying relationship: does not contain the foreign key in the primary key; indicated
in an ERD by a dotted line

optional relationship: the FK can be null or the parent table does not need to have a corre-
sponding child table occurrence

orphan record: a record whose foreign key value is not found in the corresponding entity —
the entity where the primary key is located

referential integrity: requires that a foreign key must have a matching primary key or it
must be null

relational database management system (RDBMS): a popular database system based on
the relational model introduced by E. F. Codd of IBM’s San Jose Research Laboratory

relationship type: the type of relationship between two tables in an ERD (either identifying
or non-identifying); this relationship is indicated by a line drawn between the two tables.

Exercises

Read the following description and then answer questions 1-5 at the end.

The swim club database in Figure 9.17 has been designed to hold information about students
who are enrolled in swim classes. The following information is stored: students, enroliment,

swim classes, pools where classes are held, instructors for the classes, and various levels of
swim classes. Use Figure 9.17 to answer questions 1 to 5.

Coding-Bootcamps.com

tblEnroliment
% Lessonindex
? so
Status
Charged
AmountPaid
DateEnrolled

Figure 9.17. ERD for questions 1-5

The primary keys are identified below. The following data types are defined in the SQL

Server.

tblLevels
Level — Identity PK

tbiLevels
? Level L tblClasses
ClassName _\— % Lessonindex
= Level
tblPool SectionlD
? pool 1 Semester
PoolName D_ays
Location o iHME
Pool
= Instructor
tbIStaff / Limit
? staffiD L Enrolled
FirstName Price
Middlelnitial
LastName
Suffix
Salaried
PayAmount

ClassName — text 20 — nulls are not allowed

tblPool
Pool — Identity PK

PoolName — text 20 — nulls are not allowed

Location — text 30

tbIStaff

StaffID — Identity PK
FirstName — text 20
Middlelnitial — text 3
LastName — text 30
Suffix — text 3
Salaried — Bit
PayAmount — money

tbiClasses

LessonIndex — Identity PK

Level — Integer FK

SectionID — Integer

Semester — TinyInt

Days — text 20

Time — datetime (formatted for time)
Pool — Integer FK

Instructor — Integer FK

Limit — TinyInt

Coding-Bootcamps.com

tbiStudents

? sip
FirstName
Middlelnitial
LastName
Suffix
Birthday
LocalStreet
LocalCity
LocalPostalCode
LocalPhone

57

Enrolled — TinyInt
Price — money

tblEnroliment

LessonIndex — Integer FK

SID - Integer FK (LessonIndex and SID) Primary Key
Status — text 30

Charged — bit

AmountPaid — money

DateEnrolled — datetime

tbIStudents

SID — Identity PK
FirstName — text 20
Middlelnitial — text 3
LastName — text 30
Suffix — text 3
Birthday — datetime
LocalStreet — text 30
LocalCity — text 20
LocalPostalCode — text 6
LocalPhone — text 10

Implement this schema in SQL Server or access (you will need to pick comparable data
types). Submit a screenshot of your ERD in the database.

1. Explain the relationship rules for each relationship (e.g., tolEnrollment and
tbiStudents: A student can enroll in many classes).
2. Identify cardinality for each relationship, assuming the following rules:
o A pool may or may not ever have a class.
The levels table must always be associated with at least one class.
The staff table may not have ever taught a class.
All students must be enrolled in at least one class.
The class must have students enrolled in it.
The class must have a valid pool.
The class may not have an instructor assigned.
o The class must always be associated with an existing level.
3. Which tables are weak and which tables are strong (covered in an earlier chapter)?
4. Which of the tables are non-identifying and which are identifying?

o O O O O O

Coding-Bootcamps.com

58

59

Session 10

Session 10- ER Modeling

One important theory developed for the entity relational (ER) model involves the notion of
functional dependency (FD). The aim of studying this is to improve your understanding of
relationships among data and to gain enough formalism to assist with practical database de-
sign.

Like constraints, FDs are drawn from the semantics of the application domain. Essentially,
functional dependencies describe how individual attributes are related. FDs are a kind of
constraint among attributes within a relation and contribute to a good relational schema de-
sign. In this Session, we will look at:

e The basic theory and definition of functional dependency

e The methodology for improving schema designs, also called normalization

Relational Design and Redundancy

Generally, a good relational database design must capture all of the necessary attributes
and associations. The design should do this with a minimal amount of stored information and
no redundant data.

In database design, redundancy is generally undesirable because it causes problems main-
taining consistency after updates. However, redundancy can sometimes lead to performance
improvements; for example, when redundancy can be used in place of a join to connect data.
A join is used when you need to obtain information based on two related tables.

Consider Figure 10.1: customer 1313131 is displayed twice, once for account no. A-101
and again for account A-102. In this case, the customer number is not redundant, although
there are deletion anomalies with the table. Having a separate customer table would solve this
problem. However, if a branch address were to change, it would have to be updated in multi-
ple places. If the customer number was left in the table as is, then you wouldn’t need a branch
table and no join would be required, and performance is improved.

Coding-Bootcamps.com

accountNo | balance | customer | branch address | assets

A-101 500 1313131 | Downtown | Brooklyn | 9000000
A-102 400 1313131 | Perryridge | Horseneck A 1700000

A-113 600 9876543 | Round HI | Horseneck | 8000000

A-201 900 9876543 | Brighton Brooklyn | 7100000
A-215 700 1111111 | Manus Horseneck ' 400000

A-222 700 1111111 |Redwood | Palo Ako | 2100000
A-305 350 1234567 | Round Hl | Horseneck ' 8000000

Bank Accounts

Insertion Anomaly

An insertion anomaly occurs when you are inserting inconsistent information into a ta-
ble. When we insert a new record, such as account no. A-306 in Figure 10.2, we need to
check that the branch data is consistent with existing rows.

accounmoi balance | customer | branch address assets

A-101 500 1313131 Downtown Brooklyn | 9000000

A-102 400 1313131 Perryridge Horseneck | 1700000
A-113 600 9876543 Round HE | Horseneck | BOO000O

A-201 900 |9876543 Brghton | Brooklyn | 7100000
A-215 700 |1111111 |Manus | Horseneck | 400000

A-222 700 1111111 Redwood | Palo Ako | 2100000

A-305 350 1234567 Round HE | Horseneck | 8000000
A-306 800 1111111 Round HE Horseneck | 8000800

Insertion anomaly - Insert account A-306 at Round Hill

Coding-Bootcamps.com

61

Update Anomaly

If a branch changes address, such as the Round Hill branch in Figure 10.3, we need to up-
date all rows referring to that branch. Changing existing information incorrectly is called an
update anomaly.

accountNo | balance | customer | branch address assets

A-101 500 1313131 | Downtown | Brooklyn | 9000000

A-102 400 1313131 Perryridge Horseneck | 1700000

A-113 | 600 9876543 Round Hi | Palo Ato | 8000000

A-201 900 9876543 Brighton | Brooklyn | 7100000

A-215 | 700 1111111 | Manus Horseneck | 400000

A-222 700 1111111 |Redwood ' Palo Ato | 2100000

A-305 350 1234567 Round HE | Horseneck | 8000000
Update Anomaly - Round Hill branch address

Coding-Bootcamps.com

62

Deletion Anomaly

A deletion anomaly occurs when you delete a record that may contain attributes that
shouldn’t be deleted. For instance, if we remove information about the last account at a
branch, such as account A-101 at the Downtown branch in Figure 10.4, all of the branch in-
formation disappears.

accounmoi balance | customer | branch address assets

A-101 | S00 1313131 | Downtown | Brooklyn | 9000000

A-102 | 400 1313131 | Perryndge | Horseneck | 1700000

A-113 | 600 9876543 |Round Hl | Horseneck | 8000000

A-201 | 900 9876543 | Brighton Brooklyn | 7100000
A21S |700 |1111111 |Manus | Horseneck 400000
A222 [700 |1111111 [Redwood |PabAko |2100000
[a-305 l;soi 1234567 | Round H | Horseneck | 8000000

Deletion anomaly - Bank Account

The problem with deleting the A-101 row is we don’t know where the Downtown branch
is located and we lose all information regarding customer 1313131. To avoid these kinds of
update or deletion problems, we need to decompose the original table into several smaller
tables where each table has minimal overlap with other tables. Each bank account table
must contain information about one entity only, such as the Branch or Customer, as displayed
in Figure 10.5.

Branch Customer
PK | Branch!D PK | AccountNo
------ -0<
BranchName CustomerlD
Address Balance
FK1 [BranchiD
Assets

Coding-Bootcamps.com

63

Following this practice will ensure that when branch information is added or updated it
will only affect one record. So, when customer information is added or deleted, the branch
information will not be accidentally modified or incorrectly recorded.

Example: employee project table and anomalies

Figure 10.6 shows an example of an employee project table. From this table, we can as-
sume that:

1. EmplID and ProjectID are a composite PK.

2. Project ID determines Budget (i.e., Project P1 has a budget of 32 hours).

EmpID | Budget | ProjectiD | Hours
$75 32 P1 7
S75 40 P2 3
$79 32 P1 4
$79 27 P3 1
$80 40 P2 5
17 P4

Next, let’s look at some possible anomalies that might occur with this table during the

following steps.

1. Action: Add row {S85,35,P1,9}
Problem: There are two tuples with conflicting budgets
Action: Delete tuple {S79, 27, P3, 1}
Problem: Step #3 deletes the budget for project P3
Action: Update tuple {S75, 32, P1, 7} to {S75, 35, P1, 7}
Problem: Step #5 creates two tuples with different values for project P1’s budget
Solution: Create a separate table, each, for Projects and Employees, as shown in Fig-
ure 10.7.

No ook owd

Employee

i PK EmpID
PK |ProjectiD Ly O¢ PK.FK1 | ProjectiD

Project

Budget
Hours

Coding-Bootcamps.com

64

How to Avoid Anomalies

The best approach to creating tables without anomalies is to ensure that the tables are
normalized, and that’s accomplished by understanding functional dependencies. FD ensures
that all attributes in a table belong to that table. In other words, it will eliminate redundancies
and anomalies.

Example: separate Project and Employee tables

Project table Employee table
ProjectiD | Budget EmpID | ProjectiD | Hours
P1 2 | :
P2 - 579 P1 4
_P3 a $79 P3 1
Pa 17 S80 P2 5

By keeping data separate using individual Project and Employee tables:

No anomalies will be created if a budget is changed.

No dummy values are needed for projects that have no employees assigned.
If an employee’s contribution is deleted, no important data is lost.

No anomalies are created if an employee’s contribution is added.

PowhdPRE

Coding-Bootcamps.com

65

Key Terms

deletion anomaly: occurs when you delete a record that may contain attributes that shouldn’t
be deleted

functional dependency (FD): describes how individual attributes are related
insertion anomaly: occurs when you are inserting inconsistent information into a table
join: used when you need to obtain information based on two related tables

update anomaly: changing existing information incorrectly

Exercises

1. Normalize Figure 10.9.

Attribute Name Sample Value Sample Value Sample Value
StudentID 1 2 3
StudentName John Smith Sandy Law Sue Rogers
CourselD 2 2 3
CourseName Programming Level 1 Programming Level 1 Business
Grade 75% 61% 81%
CourseDate Jan 5t 2014 Jan 5%, 2014 Jan 7th, 2014

Figure 10.9. Table for question 1

2. Create a logical ERD for an online movie rental service (no many to many relation-
ships). Use the following description of operations on which your business rules must
be based:The online movie rental service classifies movie titles according to their
type: comedy, western, classical, science fiction, cartoon, action, musical, and new re-
lease. Each type contains many possible titles, and most titles within a type are avail-
able in multiple copies. For example, note the following summary:TYPE TITLE
Musical My Fair Lady (Copy 1)

My Fair Lady (Copy 2)
Oklahoma (Copy 1)
Oklahoma (Copy 2)
Oklahoma (Copy 3)
etc.
3. What three data anomalies are likely to be the result of data redundancy? How can
such anomalies be eliminated?

Coding-Bootcamps.com

66

Next Classes

Now that you have successfully finished this Intro to Database class, you can continue your
journey by taking its follow up class or Intro to SQL programming (the below link).
https://learn.coding-bootcamps.com/p/learn-how-to-develop-databases-with-sql-
programming-by-examples

If you like to learn back-end development and use database in your next web development
project, taking the following classes are highly recommended:

e Learn PHP Programming
e Web Development with PHP & MySQL
e |Introto HTML and CSS
e Learn Node.JS, Express.JS and MongoDB
e Introduction to Linux OS
Source

This course materials are from Database Design—2nd Edition book written by Adrienne Watt

Coding-Bootcamps.com

https://learn.coding-bootcamps.com/p/learn-how-to-develop-databases-with-sql-programming-by-examples
https://learn.coding-bootcamps.com/p/learn-how-to-develop-databases-with-sql-programming-by-examples
https://learn.coding-bootcamps.com/p/learn-how-to-develop-databases-with-sql-programming-by-examples
https://learn.coding-bootcamps.com/p/learn-php-programming-by-hands-on-examples
https://learn.coding-bootcamps.com/p/learn-php-and-mysql-web-development-by-examples
https://learn.coding-bootcamps.com/p/learn-html-css-html5-and-css3-by-hands-on-examples
https://learn.coding-bootcamps.com/p/learn-node-js-express-js-and-mongodb-by-examples
https://learn.coding-bootcamps.com/p/learn-linux-coding-by-examples-intro-level
https://opentextbc.ca/dbdesign01/

