Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Functions

In Solidity, a Function is executable block that performs an operation.

28~ function set{string memaory , string memory) public {
29 value = _wvalue;

38 myWal = _MyWall;

S| 1

32 %

Functions can take parameters, and/or return parameters.

23 - Ton get{) public wiew returns(string memory, string memory

return (value, myVall;

26

27
28~ function set{string memory , string memory) public {
29 Va = =t

PP
Ty

38 myVal = _MyVall;
3 H
32 1}

22~ i Ztvalluint } internal pure returns (SLri
23
24 uint TS

25 string memory myString;

26

27 inum = _iTst;

28 - if(inum == @){

29

30 mystring = "The number is @";

31

32 }

33~ if(inum > @ &% inum < 1@){

34 mystring = "The number is small®;
35 T
36~ glse if(inum »= 18 &% inum < 18@) {
37

38 myString = "The number is big";
39

40 T
41 - glse if(inum »= 188 &% inum < 1888) {
42

43 mystring = "The number is way big";
44

45 }
45 - glse if(inum »= 1880 &% imnum < 999993) {
47

43 myString = "The number is huge";

45

g }
51~ elseq

52 mystring = "The number is way huge and out of sight”;
53 T

54 return myString;

55

56 }

57

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Functions need to be specified as public, private, internal, or external
Public functions are visible and can be called by other function or by the contract interface.

28 - functiof ring memory , string memory
29 va glue;
38 myVal = _MyWall;

31 }

Private functions are only visible within their own contract.
Private functions can only be called by other functions within their own contact and cannot be called by

other contracts.
16 ~ function setint (int256){
17

18 myInt=1i;

19 fulllnt = myInt + 1@;

28

21 }

22

23~ function set{string memory , string memory) public {
24 value = _value;

25 i yVall;

26

27 }

28

29 - function get({) public view returns(string memory, string memory, int256 1L
e return (value, myWal, fulllImt];

31

32 }

EE T

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

The private function is part of the interface, but it was called by the set function, and its results were
returned by the get function.

Deployed Contracts]

hello®, “warld A

O:string: hello
1: string: world

21int254: fullint 35

Functions declared as external can be called from other contracts

External functions cannot be called internally.

If there are large amounts of data, external functions may be more efficient.
The_gxample below shows the set function, call the external setint function.

16 - function setint (int256 1}
17
18 myInt=1i;
19 fullInt = myInt + 1@;
26
21 1
22
23 - function set{string memaory , string memory) public {
24 value = _value;
25 myVal = _MyWall;
E 25 cetint(i):
27 }

-

Calling functions from other Contracts

Functions and data can be called from other contracts.

Contracts can be declared within other contracts using the new command.

Once a contract is declared, within another contract, the newly declared contract’s public functions and
data can be called.

In the example below, we have two contracts, holdDaata, and userBase.

Contract holdData is declared within userBase, as hd, with the new command.

Contract holdDaata’s public functions and data are available to contract userBase.

When you run a contract where other contract are in the same file, make sure the correct contract is
select for execution

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Deployed Contracts i

userBase at OxBc1_401f5 (memory) l n x

1 pragma solidity »=8.5.1j|

2
3~ cgntract holdDaata o
d uint public data = 42;
5 Jihd.myBaseData(28);
[
I function setMyData (uint256 1) public pure returns {(uint256 _prd) {
3 //Doubles the past in data
g _prd = _i * 2;
18 }
11
12 - function myBaseData(int256 m) internal pure returns {(int256 r){
13
14 _r=_m+ 18;
15 }
16 T
17
18

1

@ccntra:t userBase {
2

— holdDaata hd = new holdDaatal);
23 uint2s6 theData;

24

25 - function lookAtDatal)} public view returns {uint) {
return hd.data();

27 T

28 - function getMyData{uint256 _iDotao) public view returns (uint256 _dotoval){

29

[> _dataval = hd.setMyData(_iData);

31

32 return _dataval;

33

34 }

35

Contact userBase cannot call contract’s holdDaata’s myBaseData function directly, as function
myBaseData is internal.

A compiler error is returned.

Another function within contract holdDaata will have to call function myBaseData for it to be used by
function userBase.

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

1 pragma solidity »>=8.5.1;
2
3+ contract holdDaata {

4 uint public data = 42;
5 Fihd.myBaseData(28);
5]
7 function setMyData (uint256 1)} public pure returns (uint256 I
g /fDoubles the past in datz
g _prd = _i ¥ 2;
168 }
11

— function myBaseDatalint258 ure returns (int256 _r){
13
14 _r=_m+ 18;
15 }
16 1}
17
18
19
2@ ~ contract userBase {
21
22 holdDaata hd = new holdDaatal):
23 uint256 public theData;
24
25 -~ function lookAtDatal) public view returns {uint256 _k) {
26 return hd.data():
27 }
28 - function getMyData{uint25s)} public returns (uint25e 1
29
e _dataval = hd.setMyData(_iData);
31

‘B 32 hd.myBaseData({22);
33
34 theData = _dataval;
35 return theData;
36
37 }
3E 3

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Calling Functions

Solidity supports calling functions, from other functions.

A function call may or may not return data

A function call may or may not take input parameters.

A function call is performed the same way it is performed in Java, C++, or JavaScript.

The example below shows function addUser calling function userCnt, to count the number of users.
7 - function addUser(string memory » string memory) public onlyOwner {

Jffadding internal fumction

35
39
) 5crCrt()
41 users.,pushiUser(_fname, _Iname)};
42

43

44 3

45

46 /finternal
—-Fu’lc'tim userCnt() internal {

43 userCounter += 1;

49

58 }

51

As discussed earlier, functions can be called from other contracts.

The other contract must be instantiated using new
28 ~ contract userBase {

21
— holdDaata hd = new holdDaata();
23 C th

24

uint256 publi eData;
25 - function lookAtDatal) public view returns {(uint256 _k) {
26 return hd.data():
27 }
28 - function getMyData{uint25e)} public returns (uint256 1

29

— _dataval = hd.setMyData(_iData);
31 |
32

theData = _dataval,;

33 return theData;
34
35 K
s }
Inheritance

Solidity supports inheritance and polymorphism similar to Java and C++

Inheritance between contract is implemented using is keyword

Inheritance is defined in the function header, and multiple inheritance is supported.

The example below shows contract userBase is or inherits the attributes and functions of function
basicData

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

—ccntract basicData {
21
2 s puiscGoen) 106 _
uint256 public mewvadtde;

23
24
— function setVal{uint256 _iVal) public {
26
27

mewValue = _iVal;
H
T

28
29
— contract userBase is basicData{
37
32

holdDaata hd = new holdDeatal);

i3 uint256 public theData;

34

35 - function lookftDataf) public view returns (uint2%6 &) {

36 return hd.data();

37 }

38

39 - function getMyData{uvint256 iDoto, uint2Sé _imyDoto) public returns (uint256 dotovel, uint256 _Eev){
4

41 _dataval = hd.setMyData(_iData);

) :tVsl(_inDsta);
43 theData = _dataval;
44 return (thelata, (keyData))
45

AR
Contract userBase uses setValue to set the value of variable newValue, and it also has the variable

keyData

Deployed Contracts]

userBase at 0x610_.44118 {memory) n o

keyData

) 0:uincZ256: 100

lookAtData

O:uint256:12

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Returns, and Return
When a function returns data, it is declared in the header, and also in the function’s statement.
If the function statement returns the data declared in the header, return is not needed.
No return statement is needed
contract Simple {
function arithmetic{uint _a, uint _h)

public
(:::??;?EEE:EEint o_sum, uint o_product)
i

o_sum = _a + _b;

o_product = _a * _b;

contract Simple {
function arithmetic{uint _a, uint _b)}
public
pure

returns (uint o_sum, uint o_product

return {_a + _b, _a * _b};

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Pure Functions

Pure functions do not update or read the transaction or block state values.
Hashes are sensitive to changes.

Deterministic functions return the same value every time they are run.
Pure functions do access state values such as: address.balance

Pure functions do not access state variables: block, tx, msg

Pure functions only call other pure functions.

1 pragma solidity »=8.5.8 <@.7.8;
2

3~ contract addEm {
4 function myAdd{uint256 » uint256)] 3L31FE‘T..II'“15 (uint R
5

_a = numVal * baseVal + 16;

W2 = o
et

Pure function myAdd attempts to call not pure function testP, and a compiler error is returned

pragma solidity »=8.5.8 <8.7.8;

1

2

3~ contract addEm |{

4 function myAdd(uint256 » uint2s6)] 3L31E‘T..II'“15 (uint R
5

6

7

8

9

_a = numval * baseWVal + 16;
testP({"test Pure");

A 11 - function testP(string memory } public returns {string memory iE1
13 _str = _mystr;

15 }

Now it works
1 pragma solidity »=8.5.8 <@.7.@;
2

3~ contract addEm {
4- function myfdd(uint256 , uint256) pu returns (uint VRS
5

[+ _a = numVal * baseVal + 16;
7 testP("test Pure");

8

9 ¥

1@

11~ function testP(string memory) :.|L1'_-.-:-t.rr5 {string memory bE4
12

13 _str = _mystr;

14

15 }

16 7

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

View Functions

Just like pure functions view functions do not modify the state.

View functions do not write to state variables or emit events.

View functions do not create other contracts or make Ether calls.

View functions only call other functions declare as view or pure.
1 pragme solidity »=9.5.8 <@.7.8;

2

3~ contract addEm |

4- function myAdd(uint25e » uint25s) public wiew returns {uint _a) {
5

6 _a = numal * baseVWal + 16 + now;

7

a8

g 3

16

10

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Fallback Functions
A fallback function is an unnamed function in a contract.
A fallback function does not take or return arguments
A fallback must have external visibility.
As the name implies, the fallback is called if no other functions match request function identifier.
The fallback executes when the contract receive Ether.
A fallback must be payable to receive Ether and add it to the balance
1 pragmé solidity #@.5.1; .

= contract myAddress {
/fmapping iz a key / value pair

3
4
5
& mapping{address =» uint256) public balance;
7 address payable mywalletl;

8

g eyent Purchase (

1e address _buyer,

11 wint256 _amount

12

13 13

14 /fevent are for subscribing and filtering for an event.
15

16 ~ constructor {address pavable _wallet) public {

17 mywalletl = _wallet;

function() external payvable {

buvfAsszet();

27 - function buyAsset() public payable{
28 S /buy

29

38 balance[msg.sender] += 1;

31 mywalletl.transfer{msg.value);
32 /fsend ether to a wallet

33 emit Purchase(msg.sender, 1);
34

5 ¥

36

37

iz}

11

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Clicking (fallback) runs buyAsset. The fallback is payable, therefore the fallback button is red. Since it is
payable, it can add to the address balance.

Deployed Contracts @

nryAddress at Ona3s._F7als (memory) n 4

(fallback)

buyAsset

balance OwCAZSh7d915458EF540aDesd W

O uint256: 1

Function Modifiers

Function Modifiers, as the name implies, change the way a function executes.
Modifier is like custom function types

Modifiers are called in the function’s header and can test conditions during run time.
Modifiers are inheritable.

The example below restricts running of the function addUser only to the address that deployed the
contract.

If the account address running the contract changes, the addUser function will return an error.

45 - modifier onlyadminUser{) {
47
48 reguire {msg.sender == admin);

49 H

58

51 3

52

53

54 - function addUser(string memory _fname, string memory _Llnawme) public onlyadminUser {
55

56 Jfadding internal function

57 addUserCnt(};

58 users[usrCounter] = User{usrCounter, _fname, _lname);

59 3

a8

6l

—_

12

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Deploying account address: 0xCA35b7d915458EF540aDe6068dFe2F44E8fa733c
It successfully runs.

OxCA3..a733c(99.9 ~

Walue 0 wiei v

‘ MyMappingContract - browser/myT # |{
or

At Address Load contract from Address

Transactions recorded: h

Deployed Contracts 0]

.Tﬂml- .Sl-lm" v
m 1

O:uint254: id11
1:string: _fname Tom

2:string: _Iname Sims

usrCounter

O:uint256: 1

Success

° [vm] from:8xca3...a733c to:MyMappinglontract.addUser(string,string) @x5e7...26e9f value:@ wel data:@x@79...820800 logs:® hash:2x8b4...08285¢c

13

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com

Session 7- Smart Contracts- Functions

Now the account address running function addUser is changed to:
0x4B0897b0513fdC7C541B6d9D7E929C4e5364D2dB

Account © 0x4B0..4D2dE (99 ¥ O
Gas limit 3000000

Walue 0 wiei r

‘ MyMappingContract - browser/myT % |1
or

At Address Load contract from Address

Transactions recorded: €) ™

Deployed Contracts i}

1 W

.Jd-lr‘ul "Dahlll v

O:uint254: id11
1:string: _fname Tom

2:string: _Iname Sims

usrCounter

O:uint256: 1

Error is returned

€) 1] from:exsne...4d2db toziyMappingContract. adduser (string,string) OxSe7...26e9f value:@ wei data:@xe7g...00009 10gs:@ hash:dxses. . .42169

transact to MyNappingContract.addUser errored: VM error: revert.
revert The transaction has been reverted to the initial state.

Note: The called function should be payable if you send value and the walue you send should be less than your current balance. Debug the transaction to get more information.

Constructors
Constructors are optional functions used for contract initialization.

14

.. |

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Constructors are the first to execute when the contract runs.

Once the constructor runs, the whole contract is deployed to the blockchain.

Constructors are either public or private.

If the constructor is omitted a default Solidity runs a default constructor.

The Constructor below ensures that the contract is deployed by an owner Ethereum wallet address. The

contract will not deploy without an Ethereum wallet address.
1 pragma selidity ~8.5.1;

2

3+ contract myAddress {

4

5 f/mapplng i1s a key / wvalue pair

& mapping{address =» uwint256)} public balance;
7 address payable mywalletl;

a8

9 event Purchase
16 gddress _buyer,
11 uint256 _amount
12
2l 1;
14 ering for an event.

15
16 constructor (address payable _wallet) public {
1 mywalletl = _wallet;

function() exte

23 buyAsset();

T function buvAsset() public payvable{
25 S fbuy

36 balance[msg.sender] += 1;

31 mywalletl.transfer{msg.value);
32 f/send ether to a wallet

33 emit Purchase{msg.sender, 1);

15

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

OxCAZShTdP15458EF540aDe00b8; W

or
Load contract from Address
Transactions recorded: v
Deployved Contracts]

myAddress at OxBE7_..69cfA {memory) D 4

(fallback)

The constructor below initialized the Ethereum address for admin. The admin address id the contract
owner.

32~ constructor{) public {
33

34 gdmin = msg.szender;
35

36 }

16

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Overloading Functions

Solidity supports overloading functions

A contract can have more than one function with the same name, as long as parameters are different.
At runtime the contract runs the called function whose parameters match.

The example below shows 2 functions in the same contract named addUser

This is permitted because the functions parameters are different.

AE - function adl&er(s-_l‘ing memory , string memory) public [
61

62 Jfadding internal function

63 addUser(};

64 users[usrCounter] = User{usrCounter, _fname, _lname);
&5 }

&6

67 - function addUser(} internal {

B8 usrCounter += 1;

69

78 }

When addUser is called with the parameters, addUser(), the addUser at line 67 is called and executed,
function addUser().

Mike", "Sims" b

If addUser is called with 2 string input parameters, ,
the addUser, function addUser(string memory _fname, string memory _Iname) public {, is called, and
executed.

17

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Ethereum payments

The smart contract takes action on Ethereum transactions.

Smart contracts will involve updating Ethereum wallets by transferring Ether.

A smart contract transfers ether between users, or Ethereum Addresses using special global variables.
Solidity provides a rich set of tools to facilitate the transfer of assets and Ether

Both Remix and Truffle provide simulated Ether to develop and test Ethereum payments.

Block and Transaction Properties
e blockhash(uint blockNumber) returns (bytes32): hash of the given block - only works for 256
most recent, excluding current, blocks
e block.coinbase (address payable): current block miner’s address
e block.difficulty (uint): current block difficulty
e block.gaslimit (uint): current block gaslimit
e block.number (uint): current block number
e block.timestamp (uint): current block timestamp as seconds since Unix epoch
e gasleft() returns (uint256): remaining gas
e msg.data (bytes calldata): complete calldata
e msg.sender (address payable): sender of the message (current call)
e msg.sig (bytesd): first four bytes of the calldata (i.e. function identifier)
e msg.value (uint): number of wei sent with the message
e now (uint): current block timestamp (alias for block.timestamp)
e tx.gasprice (uint): gas price of the transaction
e tx.origin (address payable): sender of the transaction (full call chain)

ABI Specification

Blockchain is built on hashing.

Solidity Contracts use the Application Binary Interface (ABI) specification.
ABI uses a hash function called Keccak256

A common use for ABl and Keccak256 is string comparison

Solidity does not evaluate string equality.

Solidity will evaluate the string hashes and return equal, or not equal

18

s wanawn P

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

pragma solidity »=@8.5.8 <@.7.8;

contract EvaluateStringsContract {

lic bEqual;
ublic mystringl;
ublic mystring2;

function stringComp(string memory » string memory } public returns(string memory , string memory

bEqual = compareStringsbyBytes(_str2, _stri);

if (bEgual == true){
_str@ = _str2;
_strl = _str3;

mystringl = _str@;
mystring?2 = _strl;
return {mystringl, mystring2);

function compareStringsbyBytes(string memory =1, string memory =2} internal pure returns{bool){
return keccak236({abi.encodePacked(sl)) == keccak256{abi.encodePacked(s2));

}

String “Hello” is equal to string “Hello”

19

)1

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Deployved Contracts m
EvaluateStringsContract at 0278 __3F D x
stringComp -~
_stra:
"Hallg"
_stra:
"Hallg"

0

String “Hello” is not equal to string “hello”

20

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

Deploved Contracts m}
EvaluateStringsContract at 0x27B_3F m x
stringComp ~
_stra:
"Hello"
_stra:
"Rzl

0: bool: false

Ethereum Time

The Ethereum Blockchain uses the epoch time, or Posix time.

Sometimes called Unix time, it is a common, maintained time from a specific point in time called the
epoch.

Epoch time is the number of seconds since the epoch.

A good source of epoch time is the website: https://www.epochconverter.com.

The epoch can be converted to a date etc.

Function modifiers can be used to read epoch time and only execute within a time windows.

The current time can be return by using block.timestamp.

The current time can be compared to an epoch time in the future.

21

https://www.epochconverter.com/

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

The modifier be_Iow will not allow the function to run until the block time is 1567612315 or later.

uint256 openinglime = 1567612315 ;
modifie€ onlylWhileOpen{) {

require (block.timestamp »= openingTime);

—

y

function addUser(string memory , string memory } publiz onlyWhileOpen {

Jfadding internal function
addUser(};
users[usrCounter] = User{usrCounter, _fname, _lname);

@ EpochConverter

Epoch & Unix Timestamp Conversion Tools

The current Unix epoch time is 1567968904

Address Payable
Address Payable is a Solidity data type that can receive Ether.

Address Payable is used in when transaction results in payments made to other Ethereum addresses
1 pragma solidity ™8.5.1;
2
3+ contract mySendReceiveEther {

4

5 Jfmapping is a key / value pair

& mapping{address =» uint2%6) public balance;
7 address payable mywalletl;

8

g svent Purchase

18 address _buyer,

11 pint256 _amount

12

13 B

22

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

More Resources
To read more on blockchain and understand it in depth, the reading the following articles are highly
recommended:

e History and Evolution of Blockchain Technology from Bitcoin

e Overview of Blockchain evolution and phases from Ethereum to Hyperledger

e Comprehensive overview and analysis of blockchain use cases in many industries

e Qverview of blockchain technology and blockchain development

Also, the following are more tutorials and resources on Ethereum blockchain development.
e How to Write Ethereum Smart Contracts with Solidity in 1 hour
e How to Build Auction DApp with Ethereum and Solidity Programming Language
e How to Work with Ethereum Blockchain Applications through Remix IDE
e Certified Solidity Professional Certification exam
e Learn Ethereum: Build your own DApps with Ethereum and smart contracts book by Brian Wu

23

https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://coding-bootcamps.com/blog/overview-of-blockchain-evolution-and-phases-from-ethereum-to-hyperledger.html
https://blockchain.dcwebmakers.com/blog/comprehensive-overview-and-analysis-of-blockchain-use-cases-in-many-industries.html
https://weg2g.com/application/touchstonewords/article-overview-of-blockchain-technology-and-blockchain-development-career.php
https://myhsts.org/tutorial-learn-how-to-write-ethereum-smart-contracts-with-solidity-in-1-hour.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-work-with-ethereum-blockchain-applications-through-remix-ide.php
https://blockchain.dcwebmakers.com/blockchain-certifications.html
https://www.amazon.com/gp/product/B07Y9QRHDH/

