Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 9- Testing Ethereum Contracts

Smart Contract Testing

Smart Contracts can be tested in using Remix, Truffle, or other approaches. This approach is called Unit
testing. Developers can also ad hoc their contracts as much as needs. Smart contract Unit testing is a
more formal, documented process, and is a “good practice”.

Unit Tests can be written in Solidity, or JavaScript. Solidity Tests have a set of libraries to verify data.

The Remix IDE has a testing module that will create contract frameworks for testing. It also adds a
“_test” suffix to the name of the test contract. Using the suffix, Remix recognizes the test contracts and
is able to bundle the tests into Remix’s Testing Module.

Remix lists the test with a checkbox. When the Testing Module’s Run Tests button, all the checked tests
will run, and the results will be written to a console below. If desired, the Remix tests can be run as a
suite.

r'y SOLIDITY UNIT TESTING B

Test your smart contract by creating a foo_test.sol
file (open ballot_test.sol to see the example).
@ You will find more informations in the

documentation Then use the stand alone NPM
f‘ rmodule remix-tests to run unit tests invour
] Continuous Integration
. https:/fwww.npmjs.com/package/remix-tests,
V) For more details, see How to test smart contracts

guide in our documentation.

Generate test file
S 1 ¢
#| Check/Uncheck all
@ ¥ browser/ballot_test.sol

¥| browser/MyContract1_test.sol

Results:

browser/MyContract1_test.sol (test_1)

browser/MyContract1_test.sol
3 passing (2s)



Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 9- Testing Ethereum Contracts

Creating Remix Tests
Remix tests are also created in the Remix testing module. When the Generate test file button in the
Testing module is clicked, a testing file is generated with the “_test” suffix. The testing file contains a

framework to run contract tests.

C

Generate test file

| Check/Uncheck all

O VR | TR | I R |

When the testing file is generated it only contains “out-of-the-box”, generic contract source code, that
makes a test framework. Some instructions on how to build tests are included in the test contract’s
comments. No contract code or variables are brought into the test contract. The contracts and tests in
the testing files must be edited to call the Smart Contracts functions and variables.

pragma solidity »>=8.4.8 <0.56.8;

import "remix_tests.sol”; f/ this import is automatically injected by Remix.

/f file name has to end with '_test.szol'
contract test_1 {

function beforeAll() public
/f here should instantiate tested contract
Assert.equal(uint(4), uint(3), "error in before all function"};

¥

function checkl() public {
/f use "Assert' to test the contract
Assert.equal(vint(2), uint(l), "error messages"};
Assert.equal (uint (2}, uint(2), "error message");

¥

function check2() public view returns (bool) {
/f use the return value (true or false) to test the contract
return true;
H
¥

contract test_2 {

function beforeAll{) public {
/{ here should instantiate tested contract
Assert.equalfuint(4), wint{3), "error in before all function™};

X

function checkl{) public {
/f use 'Assert' to test the contract
Assert.equalluint(2), uint{l), "error message");
Assert.equal(uint(2), wint(2), "error message");

3

function check2{) public view returns (bool) {
// use the return value {true or false) to test the contract
return true;
¥
H



Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com

Session 9- Testing Ethereum Contracts

A contract as shown below will have its functions and variables tested using Remix testing. The contract
will be instantiated in the test contract and the functions will be called in the test file.

4

(NS W N T VI R S

=]
=
o

MyContract1_test.sol MyContractl.sol myFunctionsModTimeContracts

bragma solidity ~8.5.1;
import "remix_tests.sol"; // this import is automatically injected by Remix.

~ contract MyContractl {

string public wvalue;
string public myWal;
int256 public myInt;
string public stril;

constructor()} public {

set{"Good", "Day");

Sifvalue = "myValue™;
SimyVal = "myString”;
H
function hint (int256 1) public returns (int256 M
myInt=1;
FfullInt = myInt + 18;
return fulllnt;
H

function get() public wiew returns(string memory , string memory) {
return (value, myVall;

function myGet() public returns{string memory) {
strl = myVal;
return strl;

H

function set{string memory , string memory ) public {
value = _walue;
myVal = _MyVall;

H



Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 9- Testing Ethereum Contracts

The Remix testing file below is built from the Contract shown above. The test contract shown below is
instantiating the contracts functions and returning results to validate testing.

F'y SOLIDITY UNITTESTING B

remix
Test your smart contract by creating a foo_test.sol

file (open ballot_test.sol to see the example).
@ You will find more infarmations in the
documentation Then use the stand alone NPM

f‘ maodule remix-tests to run unit tests in your
(/] Continuous Integration
‘) https:/fwww.nprmjs.com/package/remix-tests,
v For more details, see How to test smart contracts

guide in our documentation.

R

Generate test file

browser/ballot_test.sol

=

«| Check/Uncheckall

LS S

¥ browser/MyContract1_test.sol

browser/test_test.sol

Results:

browser/MyContract1_test.sol (test_1)

riMyContract1_test.sol

3 passing s

Remix Testing Functions

e

MO e o sl pa e T

4

o
E
m

MyContract1_test.sol MyContractlsol myFunctionsModTimeContract.sol

pragmz solidity *@.5.1;

impert "remix_tests.sol"; f/ this import is automatically injected by Remix.
impert "./MyContractl.sol™;

/4 file name has to end with
contract test_1 {

'_test.sol'

int256 public myfulllnt = @;
string myValuel;

string theValue;

MyContractl mycontractl;
string strval;

function beforefll() public {
mycontractl = new MyContractl();
// here should instantiate tested contract
/fAssert.equal(uint(4), uint(3), "error in before all function");

b

function checkl() public {
/f use 'Assert' to test the contract

myFullInt = mycontractl.hint(5);
mycontractl.set("Hello", "HWorld");

Assert.egual(myfullInt, 15, "MNot the Correct sum”)};

strval = mycontractl.myGet{);

Assert.egual(mycontractl.value(), "Hello", "Error: Mot Hello");

Assert.equal(strval, "World", "Error: not World"):

function check2() public view returns(string memocry, string memery) [{

mycontractl.get();

The Remix tests include a group of functions to validate contracts. These functions evaluate values
returned and look for equality, or inequality to expected values and behavior. These functions are called

the Assert functions.

The available Assert libraries are as follows:

Assert.ok() bool

Assert.equall() uint, int, bool, address, bytes32,
string

Assert.notEqual() uint, int, bool, address, bytes32,
string

Assert.greaterThan() | uint, int

Assert.lesserThan() | uint, int




Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 9- Testing Ethereum Contracts

The Assert functions follow a template for evaluations. The template follows: Assert.equal(returned
value, expected value, “message”)

Available special functions for Solidity Testing:

15 -
16
17
13
19
28
71

beforeEach() - runs before each test. This function run to be sure a new instance of the contract
is created if needed.

beforeAll() — instantiates the contract to be tested

before() function runs before tests, instantiates the contract to be tested, and initializes.

function beforedll() public {

mycontractl = new MyContractl();
/¢ here should instantiate tested contract
fiffssert.equal{uint{4}, uint(3), "error in before &1l function"};

by

Calling the instantiated contracts, functions and variables.

15 -
16
17
13
19
28
21
22
23
24
25
26

geforeall() public {

yoontractl = new MyContractl():
here should instantiate tested contract
FiAssert.egual{uint(4), uint(3), "error in before &ll function");

functioy 1(

ff us zert’ to test the contract
myfullInt = mycontractl.hint(5);
mycontractl.set("Hello", "World");

Continuous Integration

Solidity Remix testing has a command line interface (CLI). The remix-tests can be configured in an
automated continuous integration (Cl) environment which supports Node.js. The Cl environment can
also include deployments.

Node Package Manager and remix-tests

The NPM package for Remix tests is called: remix-tests. The package can be installed using: npm -g
install remix-tests.



Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 9- Testing Ethereum Contracts

Testing Structure

Truffle includes an automated testing framework. This framework lets you write simple and manageable
tests in two different ways:

e JavaScript

e Also, Solidity

Similar to Remix testing, JavaScript tests also have special functions to call Solidity Contracts, evaluate
results and return results.

JavaScript tests using the Truffle console to instantiate contracts, call functions and evaluate results.
JavaScript tests uses special functions, such as async()/await() to run JavaScript tests.

The truffle JavaScript tests also have initialization function such as the, beforeEach function. The truffle
JavaScript tests use their own assert functions to evaluate results.

A typical Truffle JavaScript test includes a require() function which can be used to import the contract
and instantiate to be tested. JavaScripts tests also have their own before() function which calls
contracts.

Each test runs in one it() function block with a name and list of contract functions calls and an evaluation
of results. JavaScript testing also uses its own assert() functions for evaluations of equality and
inequality.



Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com

Session 9- Testing Ethereum Contracts

The JavaScript test below, test the same contract we tested using the Remix testing. The JavaScript tests
have the functions:

require()
before()
async()
await()

assert(), for equality, or inequality.

The JavaScript tests validate deployment, and call functions that return integers and strings.

P rr——

const MyContractl = artifacts.require(')/MyContractl.sol")

3 contract('MyContractl', (accounts) => (l
#A | before(async () => {

28 [

=1)

this.mycontractl = await MyContractl.deployed()
})

//1s the contract successfully deployed?
e an Ethereum address?
it ('deploys successfully', async () => {
const address = await this.mycontractl.address
assert.notEqual (address, (x0)
assert.notBEqual (address, '')
assert.notEqual (address, null)
assert.notEqual (address, undefined)

1))

//Test numertic results

it('set hint', async () => {

const int0 = await this.mycontractl.hint(2%)
const nint = await this.mycontractl.fulllnt
assert.notBqual (nint, )

1))

//Test string results

it('set string', async () => {
const sl = await this.mycontractl.set("my",6 "test")
const s2 = await this.mycontractl.get()

- M

assert.notBEqual (s2.value, "")
assert.notEqual (s2.myVal, "")

1}



Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 9- Testing Ethereum Contracts

The results of running the JavaScript tests are below. The contract is successfully deployed, ie. it has an
Ethereum address, the integer values are tested and the string values are tested.

Command Prompt

:\ethereumTesting>truffle test
sing network 'development'.

Contract: MyContractl

-\ethereumTesting>

More Resources
To read more on blockchain and understand it in depth, the reading the following articles are highly
recommended:

e History and Evolution of Blockchain Technology from Bitcoin

e Overview of Blockchain evolution and phases from Ethereum to Hyperledger

e Comprehensive overview and analysis of blockchain use cases in many industries

e Overview of blockchain technology and blockchain development

Also, the following are more tutorials and resources on Ethereum blockchain development.
e How to Write Ethereum Smart Contracts with Solidity in 1 hour
How to Build Auction DApp with Ethereum and Solidity Programming Language
How to Work with Ethereum Blockchain Applications through Remix IDE
Certified Solidity Professional Certification exam
Learn Ethereum: Build your own DApps with Ethereum and smart contracts book by Brian Wu


https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://coding-bootcamps.com/blog/overview-of-blockchain-evolution-and-phases-from-ethereum-to-hyperledger.html
https://blockchain.dcwebmakers.com/blog/comprehensive-overview-and-analysis-of-blockchain-use-cases-in-many-industries.html
https://weg2g.com/application/touchstonewords/article-overview-of-blockchain-technology-and-blockchain-development-career.php
https://myhsts.org/tutorial-learn-how-to-write-ethereum-smart-contracts-with-solidity-in-1-hour.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-work-with-ethereum-blockchain-applications-through-remix-ide.php
https://blockchain.dcwebmakers.com/blockchain-certifications.html
https://www.amazon.com/gp/product/B07Y9QRHDH/

