
Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

1

Functions
In Solidity, a Function is executable block that performs an operation.

Functions can take parameters, and/or return parameters.

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

2

Functions need to be specified as public, private, internal, or external
Public functions are visible and can be called by other function or by the contract interface.

Private functions are only visible within their own contract.
Private functions can only be called by other functions within their own contact and cannot be called by
other contracts.

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

3

The private function is part of the interface, but it was called by the set function, and its results were
returned by the get function.

Functions declared as external can be called from other contracts
External functions cannot be called internally.
If there are large amounts of data, external functions may be more efficient.
The example below shows the set function, cannot call the external setint function.

Calling functions from other Contracts
Functions and data can be called from other contracts.
Contracts can be declared within other contracts using the new command.
Once a contract is declared, within another contract, the newly declared contract’s public functions and
data can be called.
In the example below, we have two contracts, holdDaata, and userBase.
Contract holdData is declared within userBase, as hd, with the new command.
Contract holdDaata’s public functions and data are available to contract userBase.
When you run a contract where other contract are in the same file, make sure the correct contract is
select for execution

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

4

Contact userBase cannot call contract’s holdDaata’s myBaseData function directly, as function
myBaseData is internal.
A compiler error is returned.
Another function within contract holdDaata will have to call function myBaseData for it to be used by
function userBase.

v

v

vv

vv

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

5

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

6

Calling Functions
Solidity supports calling functions, from other functions.
A function call may or may not return data
A function call may or may not take input parameters.
A function call is performed the same way it is performed in Java, C++, or JavaScript.
The example below shows function addUser calling function userCnt, to count the number of users.

As discussed earlier, functions can be called from other contracts.
The other contract must be instantiated using new

Inheritance
Solidity supports inheritance and polymorphism similar to Java and C++
Inheritance between contract is implemented using is keyword
Inheritance is defined in the function header, and multiple inheritance is supported.
The example below shows contract userBase is or inherits the attributes and functions of function
basicData

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

7

Contract userBase uses setValue to set the value of variable newValue, and it also has the variable
keyData

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

8

Returns, and Return
When a function returns data, it is declared in the header, and also in the function’s statement.
If the function statement returns the data declared in the header, return is not needed.
No return statement is needed

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

9

Pure Functions
Pure functions do not update or read the transaction or block state values.
Hashes are sensitive to changes.
Deterministic functions return the same value every time they are run.
Pure functions do access state values such as: address.balance
Pure functions do not access state variables: block, tx, msg
Pure functions only call other pure functions.

Pure function myAdd attempts to call not pure function testP, and a compiler error is returned

Now it works

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

10

View Functions
Just like pure functions view functions do not modify the state.
View functions do not write to state variables or emit events.
View functions do not create other contracts or make Ether calls.
View functions only call other functions declare as view or pure.

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

11

Fallback Functions
A fallback function is an unnamed function in a contract.
A fallback function does not take or return arguments
A fallback must have external visibility.
As the name implies, the fallback is called if no other functions match request function identifier.
The fallback executes when the contract receive Ether.
A fallback must be payable to receive Ether and add it to the balance

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

12

Clicking (fallback) runs buyAsset. The fallback is payable, therefore the fallback button is red. Since it is
payable, it can add to the address balance.

Function Modifiers
Function Modifiers, as the name implies, change the way a function executes.
Modifier is like custom function types
Modifiers are called in the function’s header and can test conditions during run time.
Modifiers are inheritable.
The example below restricts running of the function addUser only to the address that deployed the
contract.
If the account address running the contract changes, the addUser function will return an error.

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

13

Deploying account address: 0xCA35b7d915458EF540aDe6068dFe2F44E8fa733c
It successfully runs.

Success

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

14

Now the account address running function addUser is changed to:
0x4B0897b0513fdC7C541B6d9D7E929C4e5364D2dB

Error is returned

Constructors
Constructors are optional functions used for contract initialization.

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

15

Constructors are the first to execute when the contract runs.
Once the constructor runs, the whole contract is deployed to the blockchain.
Constructors are either public or private.
If the constructor is omitted a default Solidity runs a default constructor.
The Constructor below ensures that the contract is deployed by an owner Ethereum wallet address. The
contract will not deploy without an Ethereum wallet address.

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

16

The constructor below initialized the Ethereum address for admin. The admin address id the contract
owner.

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

17

Overloading Functions
Solidity supports overloading functions
A contract can have more than one function with the same name, as long as parameters are different.
At runtime the contract runs the called function whose parameters match.
The example below shows 2 functions in the same contract named addUser
This is permitted because the functions parameters are different.

When addUser is called with the parameters, addUser(), the addUser at line 67 is called and executed,
function addUser().

If addUser is called with 2 string input parameters, ,
the addUser, function addUser(string memory _fname, string memory _lname) public {, is called, and
executed.

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

18

Ethereum payments

The smart contract takes action on Ethereum transactions.
Smart contracts will involve updating Ethereum wallets by transferring Ether.
A smart contract transfers ether between users, or Ethereum Addresses using special global variables.
Solidity provides a rich set of tools to facilitate the transfer of assets and Ether
Both Remix and Truffle provide simulated Ether to develop and test Ethereum payments.

Block and Transaction Properties

 blockhash(uint blockNumber) returns (bytes32): hash of the given block - only works for 256
most recent, excluding current, blocks

 block.coinbase (address payable): current block miner’s address
 block.difficulty (uint): current block difficulty
 block.gaslimit (uint): current block gaslimit
 block.number (uint): current block number
 block.timestamp (uint): current block timestamp as seconds since Unix epoch
 gasleft() returns (uint256): remaining gas
 msg.data (bytes calldata): complete calldata
 msg.sender (address payable): sender of the message (current call)
 msg.sig (bytes4): first four bytes of the calldata (i.e. function identifier)
 msg.value (uint): number of wei sent with the message
 now (uint): current block timestamp (alias for block.timestamp)
 tx.gasprice (uint): gas price of the transaction
 tx.origin (address payable): sender of the transaction (full call chain)

ABI Specification
Blockchain is built on hashing.
Solidity Contracts use the Application Binary Interface (ABI) specification.
ABI uses a hash function called Keccak256
A common use for ABI and Keccak256 is string comparison
Solidity does not evaluate string equality.
Solidity will evaluate the string hashes and return equal, or not equal

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

19

String “Hello” is equal to string “Hello”

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

20

String “Hello” is not equal to string “hello”

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

21

Ethereum Time
The Ethereum Blockchain uses the epoch time, or Posix time.
Sometimes called Unix time, it is a common, maintained time from a specific point in time called the
epoch.
Epoch time is the number of seconds since the epoch.
A good source of epoch time is the website: https://www.epochconverter.com.
The epoch can be converted to a date etc.
Function modifiers can be used to read epoch time and only execute within a time windows.
The current time can be return by using block.timestamp.
The current time can be compared to an epoch time in the future.

https://www.epochconverter.com/

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

22

The modifier below will not allow the function to run until the block time is 1567612315 or later.

Address Payable
Address Payable is a Solidity data type that can receive Ether.
Address Payable is used in when transaction results in payments made to other Ethereum addresses

Introduction to Blockchain Development with Ethereum by Coding-Bootcamps.com
Session 7- Smart Contracts- Functions

23

More Resources
To read more on blockchain and understand it in depth, the reading the following articles are highly
recommended:

 History and Evolution of Blockchain Technology from Bitcoin

 Overview of Blockchain evolution and phases from Ethereum to Hyperledger

 Comprehensive overview and analysis of blockchain use cases in many industries

 Overview of blockchain technology and blockchain development

Also, the following are more tutorials and resources on Ethereum blockchain development.

 How to Write Ethereum Smart Contracts with Solidity in 1 hour

 How to Build Auction DApp with Ethereum and Solidity Programming Language

 How to Work with Ethereum Blockchain Applications through Remix IDE

 Certified Solidity Professional Certification exam

 Learn Ethereum: Build your own DApps with Ethereum and smart contracts book by Brian Wu

https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://coding-bootcamps.com/blog/overview-of-blockchain-evolution-and-phases-from-ethereum-to-hyperledger.html
https://blockchain.dcwebmakers.com/blog/comprehensive-overview-and-analysis-of-blockchain-use-cases-in-many-industries.html
https://weg2g.com/application/touchstonewords/article-overview-of-blockchain-technology-and-blockchain-development-career.php
https://myhsts.org/tutorial-learn-how-to-write-ethereum-smart-contracts-with-solidity-in-1-hour.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-work-with-ethereum-blockchain-applications-through-remix-ide.php
https://blockchain.dcwebmakers.com/blockchain-certifications.html
https://www.amazon.com/gp/product/B07Y9QRHDH/

