000006

coding-bootcamps.com Lema
¢ .
Introduction to Blockchain Development .' “
with Ethereum
" "
. '
‘. R4
Q m s ‘

Coding

Bootcamps

By Jim Sullivan from_Coding Bootcamps

https://coding-bootcamps.com/
https://blockchain.dcwebmakers.coml/
https://coding-bootcamps.com/
https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

Structure of a Smart Contract

Smart Contract Constructs

About Instructor

« Jim Sullivan is a senior blockchain instructor and developer at
DC Web Makers.

« As a Software engineer with 18 years of experiences, Jim leads
an expert team in Blockchain development, DevOps, Cloud,
application development, and the SAFe Agile methodology.

« Jim is an expert in all blockchain platforms like Hyperledger,
Ethereum, and Corda.

https://blockchain.dcwebmakers.com/

Prerequisite Courses

Taking the below courses are highly recommended:

Intro to Blockchain Technoloqgy

Intro to JavaScript

Learn Node.JS, Express.JS and MongoDB

https://learn.coding-bootcamps.com/p/introduction-to-blockchain-technology
https://learn.coding-bootcamps.com/p/learn-javascript-web-development-by-examples
https://learn.coding-bootcamps.com/p/learn-node-js-express-js-and-mongodb-by-examples
https://learn.coding-bootcamps.com/p/learn-node-js-express-js-and-mongodb-by-examples
https://learn.coding-bootcamps.com/p/learn-node-js-express-js-and-mongodb-by-examples

Recap

« What we have learned so far?

Structure of a Smart Contract

Ethereum Development

« Ethereum Smart Contracts can be written in Solidity, Vyper,
JavaScript or other High Level programming languages.

 However, no matter the programming language, they all
compile to the EVM, and are deployed to the Ethereum
networks.

« Smart Contracts are meant to respond to events and take
actions on transactions.

« Smart Contracts can manage Ether, send and receive Ether for
payments.

Structure of a Smart Contract

Ethereum Development: Pragma

The pragma key word is used to invoke the certain compilers.
Solidity contract writers will be different variations of pragma
entries.

The pragma directive is entered as shown:

Using a “greater than or equal to compiler” indicator: pragma
solidity >=0.4.22 <0.6.0;

The contract with the entry below, with the caret, ~, will not
compile with a version earlier than 0.5.2

pragma solidity 20.5.2;

Other variations: pragma solidity >=0.5.0 <0.7.0;

Structure of a Smart Contract

Ethereum Development: Comments

« Code comments greatly increase the maintainability and
understandability of your contract.
« Single line comments are indicated by “//”

1 13 b}
* Multiline comments are entered as : “/* */
1 pragma solidity >=0.5.0 <@.7.e; |
2
3+ contract TotalUpContract {
pin
5 // This contract totals passed in numbers
B
7~ /* Declare variable numl
8 Declare variable num2
9 Declare sumToal
18 intialize all to @ */
It
12 int public numl = @;
13 int publi um2 = @;
14 int publi umTotal = 8;

Structure of a Smart Contract

Ethereum Development: Data Types

« Booleans are either “true” or “false”
« Booleans have the list of operators
« | negation int boplic momtorat - 0
. i . B " ‘bool public bCondl;
 && Logical conjunction, “and Funcion sectumbers (in_auencl, int_auanc?) pubic {
* || Logical disjunction, “or”
¢ == equality
« I=Inequality

if (bCondl == true){

‘ return sumTotal;
3

}

Structure of a Smart Contract

Ethereum Development: Data Types

 Solidity supports signed and unsigned integers
 Int (signed)
 uint (unsigned)
* Int8
e Int256
* uint
e uint256

Structure of a Smart Contract

Ethereum Development: Data Types

* The integer operators exhibit the same functionality and
behavior as Java, C++ and JavaScript.
e +, addition
* -, Subtraction
« * multiplication
 /, division
* %, modulo
e ** exponential

Structure of a Smart Contract

The integer operators exhibit the same functionality
as Java, C++ and JavaScript.

. + addition <=, less that or equal to

* -, Subtraction * <, less than

« * multiplication « ==, equality

 /, division « I=, inequality

* %, modulo e >= greater than or equal to

** exponential >, greater than

Structure of a Smart Contract

Ethereum Development: Strings

Strings are special type of character arrays.

Strings must be inside quotes or double quotes: “hello “, ‘world °
Strings cannot be directly compared for equivalence in Solidity
However, strings’ hash values can be compared.

uuuuuuuuuuuuu () public returns(int , string memory) {

Structure of a Smart Contract

Ethereum Development: address data type

The address data type Is meant for Ethereum addresses.
There are 2 versions of the address data type: address and
address payable.

address payable: same as address, but also including methods:
transfer and send.

address payable supports sending Ether (Ethereum’s native
currency) to another address.

address uses the same comparisons as integer.

Structure of a Smart Contract

Ethereum Development: address data type

1 pragma solidity 0.5.1;

2

3 ~ contract GetAddress {

4

5 address payable public walletl;
6

7~ function getMyAddress() public returns (address M
8

9 walletl = msg.sender;
10 return walletl;

11

12 }
13
14

15 }

Structure of a Smart Contract

Ethereum Development: Enums

 Enums are an example of a user defined or custom data type.
« Enums are given a specific name and contain a list of data.

e The data i1s 0 indexed.

« When an enum is declared, it is declared with its name and it IS

typed as the enum.

3 v contract myStateContract {

4 enum UserOptions {listen, connect, cancel}
5 UserOptions public myOption;

6

7~ constructor() public {

8 myOption = UserOptions.cancel;

9 ¥

@

(1~ function connect() public {

(2 myOption = UserOptions.connect;

(3 }

Structure of a Smart Contract

Ethereum Development: Structs

« Another custom data type is Structs
« Structs contain a list of attribute datatypes that describe it.
struct Funder {
address addr;
uint amount;
}
« Structs model real-world items that can be managed with a
contract. Structs are data structures.
« Structs are used by other data structures such as Arrays and
Mappings.

Structure of a Smart Contract

Ethereum Development: Arrays

« Arrays are data structures where one variable of a certain data
type, contains multiple values, in different sections of memory.

« Arrays can be fixed size or dynamic.

« Fixed size arrays can be declared at the compile time.

* Values can also be added or removed from the Array using
member methods push and pop.

« The array length is used to add length to the array.

Structure of a Smart Contract

Ethereum Development: Arrays

g e e s s s B]

1 pragma solidity ©.5.1;
2

3~ contract ArrayContract {
4

5 //array to keep track of several people
Customer[] public customers;
7 Tally[5] publ

ic myTally;

8 public custCnt = 9;
9 alength;

1@

11~ constructor() public {

12

struct Customer {

string _fname;
string _lname;
string _email;

20

21

22~ struct Tally {

23

24 uint m;

25

26

27 ~ functio

ction addCustomer(string memory , string memory , string memory) public {

customers.push(Customer(_fname, _lname, _email));
custCnt++;

}

function removelastCustomer () public {
customers.pop();
custCnt--;

Structure of a Smart Contract

Ethereum Development: Mappings

- Mapping are like hash tables in that data can be accessed
with a key.
- Mappings are data structures stored with key, value pairs.
- Syntax: mapping(key => value)
- Example:
customers(1,”"Mark”, “Smith”)

Structure of a Smart Contract

Ethereum Development: Mappings

3~ contract MyPayVendorContract {

4

5 J//mapping to keep track of several vendors
mapping{uint => Vendor) public vendors;
mapping (eddress =» uint) public balance;
3
S uint256 public vendCounter = @;
iz} sddress payable public issuer;
11 uint public issuerBal;
12
13 event Sent{address pavable from, address to, string name, uint amount);
14
15~ constructor() public {
16 issuer = msg.sender;
17 3
18
“s:%:t Vendor <

21 pint25é _cid;
22 string _name;
23 gddress payable _addr;
24 uint256 _owedAmount;
25 3
26

q function addVendor{string memory , address payable , uint2se } public {
29 vendors [vendCounter] = Wendor{wendCounter, _name, _addr, _owedAmount);
3@ vendCounter++;
31

32 3

33 {F et

Structure of a Smart Contract

Ethereum Development: event and emit

« Events are members of contracts

 When an event is called, its arguments are stored in the
transaction’s log

* The logged information can be seen when the transaction is
mined.

* The log is part of the blockchain and remain with the block.

* |t is possible to subscribe to an event.

« Events are used with emit to manage writing to the log.

Structure of a Smart Contract

Ethereum Development: For Loops

« For loops have a construction like Java, C++, JavaScript etc.
* The for loop header consists of the initialization, the condition

and the iterator
* The expression in the loop will execute as long as the header

condition is true.
1 pragma solidity "0.5.2;
2
3
4 v contract newlLoopContract {
function arith(uint o) public pure returns (uint b) ¢

6 b =1;

7 for (uint 1 = 6; i < a; i++)
8 b=2%*Db + 100;

9 }

Structure of a Smart Contract

Ethereum Development: while loop

« The while loop has a header with a condition
while (k < toolsArray.length)
* The expression in the while loop’s braces executes as long as
the condition in the header is true.

* Do while loops are similar to while loops except the condition is
evaluated at the end of the loop.

* Therefore, the loop expression will be executed at least once,
even if the condition is false.

Structure of a Smart Contract

Ethereum Development: Handling Errors

« Given that Solidity is transaction based, it uses a state revert
model when errors occur.

* This prevents wasteful transactions from occurring.

 Solidity does not currently support error catching.

« Structures such as “try catch” may be added in subsequent

versions.

36~

37
38
39

40 ~

41
42
43
44
45
46
47
438

function issue (address , uint) public i§

uint256 j;
require(receivedAssetsCnt > @, "Received Asset Count must be great than 9");
while (j < receivedAssetsCnt){

require(msg.sender == issuer);

require(amount < 10@0@);

balance[receiver] += amount;

receivedAssetsCnt++;

}

Structure of a Smart Contract

Ethereum Development: revert

« The revert function also triggers exceptions to display an error.

« Revert will flag an error and reverse the call.

« An optional message can be passed into Revert to return error
details.

‘:’ [vm] from:@xca3...a733c to:Mylontract.issue(address,uint256) Oxcbb...24d39 value:08 wei data:8x867...00064 logs:0 hash:@xdfl...64c52

transact to MyContract.issue errored: VM error: revert.
revert The transaction has been reverted to the initial state.
Reason provided by the contract: "Received Asset Count must be great than @". Debug the transaction to get more information.

Structure of a Smart Contract

Summary

 The compiler version and pragma

« Comments and datatypes: integers, Booleans, strings
addresses

 Enums and Structs

« Arrays and mappings

« Event and emits

* Loops

« Handling errors

Assessment

. What is the command to declare the compiler version?
. True or False: Contracts cannot have comments?
. True or False: Are addresses a data type in contracts?
. True or False: Enums are custom data types
. True or False: Do structs model real-life entities?
. True or False: Are arrays multivalued data types?
. True or False: Are arrays only static?
. True or False: Events capture certain data values?

. True or False: emit does not write to the transaction log.
10. True or False: Loops run while a condition is false
11. True or False: Contracts cannot handle errors

OO ~NO O, WNBE

More Resources

* History and Evolution of Blockchain Technology from
Bitcoin

* Qverview of Blockchain evolution and phases from
Ethereum to Hyperledger

« Comprehensive overview and analysis of blockchain
use cases in many industries

* Qverview of blockchain technoloqgy and blockchain
development

https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://coding-bootcamps.com/blog/overview-of-blockchain-evolution-and-phases-from-ethereum-to-hyperledger.html
https://coding-bootcamps.com/blog/overview-of-blockchain-evolution-and-phases-from-ethereum-to-hyperledger.html
https://coding-bootcamps.com/blog/overview-of-blockchain-evolution-and-phases-from-ethereum-to-hyperledger.html
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://blockchain.dcwebmakers.com/blog/comprehensive-overview-and-analysis-of-blockchain-use-cases-in-many-industries.html
https://blockchain.dcwebmakers.com/blog/comprehensive-overview-and-analysis-of-blockchain-use-cases-in-many-industries.html
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://weg2g.com/application/touchstonewords/article-overview-of-blockchain-technology-and-blockchain-development-career.php
https://weg2g.com/application/touchstonewords/article-overview-of-blockchain-technology-and-blockchain-development-career.php
https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php

More Resources...

« How to Write Ethereum Smart Contracts with Solidity in 1
hour

« How to Build Auction DApp With Ethereum and Solidity
Programming Language

« How to Work with Ethereum Blockchain Applications
through Remix IDE

» Certified Solidity Professional Certification exam

https://myhsts.org/tutorial-learn-how-to-write-ethereum-smart-contracts-with-solidity-in-1-hour.php
https://myhsts.org/tutorial-learn-how-to-write-ethereum-smart-contracts-with-solidity-in-1-hour.php
https://myhsts.org/tutorial-learn-how-to-write-ethereum-smart-contracts-with-solidity-in-1-hour.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-work-with-ethereum-blockchain-applications-through-remix-ide.php
https://myhsts.org/tutorial-learn-how-to-work-with-ethereum-blockchain-applications-through-remix-ide.php
https://myhsts.org/tutorial-learn-how-to-work-with-ethereum-blockchain-applications-through-remix-ide.php
https://myhsts.org/tutorial-learn-how-to-work-with-ethereum-blockchain-applications-through-remix-ide.php
https://blockchain.dcwebmakers.com/blockchain-certifications.html
https://blockchain.dcwebmakers.com/blockchain-certifications.html
https://blockchain.dcwebmakers.com/blockchain-certifications.html

More Blockchain Training

Blockchain Management with Hyperledger for System Admins

Hyperledger Fabric and Composer for Developers

Intro to Blockchain Cybersecurity

Learn Solidity Programming by Examples

| earn Blockchain Dev with Corda R3

Intro to Hyperledger Sawtooth for System Admins

https://learn.coding-bootcamps.com/p/learn-blockchain-development-with-hyperledger-by-examples
https://learn.coding-bootcamps.com/p/learn-blockchain-development-with-hyperledger-by-examples
https://learn.coding-bootcamps.com/p/learn-blockchain-development-with-hyperledger-by-examples
https://learn.coding-bootcamps.com/p/hyperledger-blockchain-development-for-developers
https://learn.coding-bootcamps.com/p/learn-how-to-secure-blockchain-applications-by-examples
https://learn.coding-bootcamps.com/p/learn-how-to-secure-blockchain-applications-by-examples
https://learn.coding-bootcamps.com/p/learn-how-to-build-blockchain-applications-with-solidity
https://learn.coding-bootcamps.com/p/learn-corda-r3-blockchain-development-by-hands-on-examples
https://learn.coding-bootcamps.com/p/learn-corda-r3-blockchain-development-by-hands-on-examples
https://learn.coding-bootcamps.com/p/learn-corda-r3-blockchain-development-by-hands-on-examples
https://learn.coding-bootcamps.com/p/learn-corda-r3-blockchain-development-by-hands-on-examples
https://learn.coding-bootcamps.com/p/introduction-to-hyperledger-sawtooth-for-system-admins
https://learn.coding-bootcamps.com/p/introduction-to-hyperledger-sawtooth-for-system-admins
https://learn.coding-bootcamps.com/p/introduction-to-hyperledger-sawtooth-for-system-admins
https://learn.coding-bootcamps.com/p/introduction-to-hyperledger-sawtooth-for-system-admins
https://learn.coding-bootcamps.com/p/introduction-to-hyperledger-sawtooth-for-system-admins

Next Session

Smart Contract Functions

coding-bootcamps.com

"
4 .
Thank you . .
]]
\ ’
o

Codlng

Bootcamps

https://coding-bootcamps.com/
https://twitter.com/code4dc
https://www.facebook.com/codingbootcamps/
https://www.linkedin.com/showcase/coding-and-technology-classes
mailto:info@myhsts.org
https://www.youtube.com/channel/UCaLuMsWl69rRuL1m-RLKxOQ

