Coding-Bootcamps.com

Introduction to Blockchain Development with Ethereum
Coding-Bootcamps.com
Session 6- Structure of Smart Contracts

The Solidity Contract:

Pragma

The pragma key word is used to invoke the certain compilers.

It is similar to the version being used.

Solidity contract writers will be different variations of pragma entries.

The pragma directive is entered as shown:

Using a “greater than or equal to compiler” indicator: pragma solidity >=0.4.22 <0.6.0;

This indicates that the contract needs at least compiler version 4.22 and is backward compatible to
compiler version 0.6.0.

The contract with the entry below, with the caret, #, will not compile with a version earlier than 0.5.2
pragma solidity 20.5.2;

Other variations: pragma solidity >=0.5.0 <0.7.0;

Comments
Code comments greatly increase the maintainability and understandability of your contract
Single line comments are indicated by “//”

Multiline comments are entered as : “/* */”
1 pragma solidity >=0.5.8 <0.7.0; |
2

3+ contract TotalUpContract {

5 // This contract totals passed in numbers
6

7~ /* Declare variable numl

3 Declare variable num2

9 Declare sumToal

16 intialize all to @ */

1T

12 int public numl = @;

13 int public num2 = @;

14 int public sumTotal = 8;

15

16~ function setlumbers (int , int } public {
17 numl = _guantl;

13 num2 = _quant2;

19

28 }

21

22~ function sumIt() public returns(int) 1
23

24 sumTotal = numl + num2;

25 _suml = sumTotal;

26 return _suml;

27 }

28

29}

Bl

Booleans

Booleans are either “true” or “false”
Booleans have the list of operators

Coding-Bootcamps.com

e | negation

eSS Logical conjunction, “and”
e || Logical disjunction, “or”

o == equality

e I=inequality

In the function below, sumTotal will not be returned.

int public numl = @;

int public num2 = @;

int public sumTotal = 8;
bool public bCondl;

function setMumbers (int , int
numl = quantl;
numZ = _quantl;

¥

function sumIt() public returns{int

sumTotal = numl + num2;
// _suml = sumTotal;

- bCondl = false;

if (bCondl == true){

- return sumTotal;

¥

Integers

Solidity supports signed and unsigned integers
e int (signed)

e uint (unsigned)

Signed integers can be negative values.
Integers can be different sizes from 8 to 256 bits

For example:
e int8

e int256

e uint

) A

} public {

Coding-Bootcamps.com

e uint256

The integer operators exhibit the same functionality and behavior as Java, C++ and JavaScript.
Operators:

Comparisons

e <=, less that or equal to

e <, |lessthan

e == equality

e I= inequality

e >= greater than or equal to

e >, greater than

Arithmetic Operations
e +, addition

e - subtraction

e * multiplication
e/, division

e %, modulo

e ** exponential

1 pragma solidity *@.5.1;

2

3~ contract BasicRun {

4

5

B int numd = 28;

7 int numd = -1;

3 uint numB = 16;

9 uint numC = 188;
16 int public iResult;
11
12
13 ~ function mathIt() public returns (int M
14
15 iResult = num& + numhl;
16 _iResult = iResult;
17
18 1

Coding-Bootcamps.com

Deployed Contracts]

BasicRun at 0x22e..8af01 (mem{ll il I

iResult

mathlt

0:int2546: 19

Strings

Strings are special type of arrays.

Strings are must be inside quotes or double quotes:

“hello “, ‘world *

Strings cannot be directly compared for equivalence in Solidity
However, strings’ hash values can be compared.

String hashes can be compared by adding a function that returns a Boolean of the status of the passed in
strings.

Next call the function with the strings to be compared passed in as parameters.

Coding-Bootcamps.com

function sumIt() public returns(int , string memory Y A
sumTotal = numl + num2;

bCondl = true;
_strl = instruct;

bEqual = compareStringsbyBytes (_@

if {(bCondl == true &% bEqual == true){

return (sumTotal, instruct);

function compareStringsbyBytes({string memory =1, string memory s52) internal pure returns(bool){
return keccak256(abi.encodePacked(sl)) == keccak256{abi.encodePacked(s2));

}

Strings Literals using escape characters
\<newline>, escapes an actual newline
\\, backslash

\', single quote

\", double quote

\b, backspace

\f, form feed

\n, newline

\r, (carriage return)

\t, (tab)

\v, (vertical tab)

pragma solidity "8.5.1;

= contract BasicRun

€tring public liters = "\n' '‘\‘\solidity is fun !'’\'\t “V"‘treally fun\"";

1
2
3
4
5
b
Fi
B

}

Coding-Bootcamps.com

Address
The address data type is meant for Ethereum addresses.
The are 2 versions of the address data type: address and address payable.
address: manages a 20 byte data type for an Ethereum address
address payable: same as address, but also including methods: transfer and send.
address payable supports sending Ether (Ethereum’s native currency) to another address.
address does not send Ether.
Operators:
Comparisons
e <= |ess that or equal to

e <, |lessthan

e == equality

e I= inequality

e >z greater than or equal to

e >, greater than

1 pragma solidity 8.5.1;

2

3~ contract GetAddress {

4

5 address payable public walletl;
&

7= function getMyAddress() public returns (address
a

9 walletl = msg.sender;

1@ return walletl;

11

12 I

13

14

15 1

Currently select address is: 0xCA35b7d915458EF540aDe6068dFe2F44E8fa733c

Coding-Bootcamps.com

3w
Environment JavaScript VM v 3 4
5
: [

Account @ Oxca3..a733c (96.999999999%9 ~ |O& ;'
Gas limit Oxca3..a733c (96.999999999984114547 ether)
v 0x147..c160c (99.999999999999801798 ether)

alue

O0x4b0...4d2db (102.99999999999957839 ether)

GetAddrd ©0%583..40225 (100 ether)

Oxdd8...92148 (100 ether)
L

The Contract returns the current address as walletl

Deployed Contracts]

GetAddress at Ouf1f..a14f4 (memory)

getMyAddress

walletl

0: address: OxCA35b7d915458EF540aDe6068dFe2F44E8fa733¢C

Enums

Enums are an example of a user defined, or custom data type.

Enums are given a specific name and contain a list of data.

The data is 0 indexed.

When an enum is declared, it is declared with its name and it is typed as the enum.

The contract below sets the enum to connect, which is index 1,

The enum is initialized in the constructor as cancel, index 2, but the testCancel returns false

Coding-Bootcamps.com

1 pragma solidity @.5.1;

2

3~ contract myStateContract {

4 enum UserOptions {listen, connect, cancel}
5 UserOptions public myQOption;

[

7 constructor() public {

g myOption = UserOptions.cancell;

9 h

18

11 - function connect() public {

12 myOption = UserQOptions.connect;

13 ¥

14

15 = function testCancel() public view returns{bool){
16 return myOption == UserOptions.cancel;
7 ¥

138

19~ function getMyEnum({) public view returns (UserOptions _opts){
28

21 return myOption;

22 ¥

23

24 3}

getMyEnum

O:uint8: _opts 1

0: bool: false

Structs
Another custom data type is Structs
Structs contain a list of attribute datatypes that describe it.
struct Funder {
address addr;
uint amount;

Structs model a model a real-world entity that can be managed with a contract.
Structs are containers of multiple data members of its type.
Structs are used by other data structures such as Arrays and Mappings.

Coding-Bootcamps.com

1 pragma solidity *8.5.2;

3~ contract myStructContract {

a
5 f/7array to keep track of several people

] F#fPerson[] public people;

7

g wint256 public studentCounter = 8;

g Jffmapping, key value pair unit dis key person is value
18 mapping{ulnt =» Student) public students;

11

12

13

14

15 - struct Studentq

uint _idl;
string _fname;
string _lname;

23 - function addPerson{string memory _fname, string memory
24 studentCounter+s;

25 Sfpeople. push{Person(_fname, _lname));

26 f/peopleCounter += 1;

_Lnome) public {

27 students[studentCounter] = Student(studentCounter, _fname, _lname);

Coding-Bootcamps.com

Global Variables

Ether Units

assert(1 wei==1);
assert(1 szabo == 1e12);
assert(1 finney == 1e15);
assert(1 ether == 1e18);

Time Units

1 ==1 seconds

1 minutes == 60 seconds
1 hours == 60 minutes

1 days == 24 hours

1 weeks == 7 days

Block and Transaction Properties

blockhash(uint blockNumber) returns (bytes32): hash of the given block - only works for 256 most
recent, excluding current, blocks

block.coinbase (address payable): current block miner’s address
block.difficulty (uint): current block difficulty

block.gaslimit (uint): current block gaslimit

block.number (uint): current block number

block.timestamp (uint): current block timestamp as seconds since Unix epoch
gasleft() returns (uint256): remaining gas

msg.data (bytes calldata): complete calldata

msg.sender (address payable): sender of the message (current call)

msg.sig (bytes4): first four bytes of the calldata (i.e. function identifier)
msg.value (uint): number of wei sent with the message

now (uint): current block timestamp (alias for block.timestamp)

tx.gasprice (uint): gas price of the transaction

tx.origin (address payable): sender of the transaction (full call chain)

10

l

Coding-Bootcamps.com

Arrays

Arrays are data structures where one variable of a certain data type, contains multiple values, in
different sections of memory.

Arrays can be fixed size, or dynamic.

Fixed size arrays can be declared at compile time.

Values can also be added or removed from the Array using member methods push and pop.
The array length is used to add length to the array.

Arrays are often built from structs.
pragma solidity ©.5.1;

= contract ArrayContract {

ol RIS

ffarray to keep track of several people
Customer[] public customers:
Tally[5] public myTally;

3 int256 public custCnt = @;
g int25% alength;

1@

11~ constructor() public {

12

struct Customer {

string _fname;
string _lname;
string _email;

22 - struct Tally {

uint m;

27 - function addCustomer(string memory , string memory , string memory

customers. push{Customer({_fname, _lname, _email)};
custCnt++;

32 ¥
function removelastCustomer () public {

customers.pop();
custint--;

11

Coding-Bootcamps.com

Deployed Contracts)

e - -

addCustomer

_fname:

g el

_Inams:

"Mitchel®

_email:

"art@yahoo.com”

.
_ 0: uint256: 4
=

Q:uint254: _cid4

1: string: _fname Art
2:string: _Iname Mitchel
3z string: _email art@yahoo.com

12

Coding-Bootcamps.com

Control Structures
if, else, while, do, for, break, continue, return with the same behavior, rules and functionality as Java,
C++, and JavaScript.
In Solidity, Parentheses cannot be omitted for conditionals, but curly braces can be omitted around
single-statement bodies.
If (x <0)

sum=a+b;

if (expression 1) {

Statement(s) to be executed if expression 1 is true
} else if (expression 2) {

Statement(s) to be executed if expression 2 is true
} else if (expression 3) {

Statement(s) to be executed if expression 3 is true
}else {

Statement(s) to be executed if no expression is true

e return statement ends the function and returns control to where the function was called

e break just breaks the loop & return gets control back to the caller method

e continue statement ends program execution of the current iteration of a loop statement but does
not stop execution of the loop statement.

13

Coding-Bootcamps.com

If ... else if ... else example:

1 bragma solidity 8.5.1;
2
3+~ contract basicContractl{
4
5 uint iArt;
& uint myIntVal;
7 uint myInput:
B event tstVal(string wvaluel);
9
18
11 ~ function setWal{uint _ilVsl) public {
12
13 string memory str;
14
15
15 myIntval = _ival;
17 str=testVal{myIntVal);
18 emit tstVal(str);
19
28 3
21
22 - function testWal({uint 17=t) internal pure returns (string memory){
23
24 pint inum;
25 string memory mystring;
26
27 inum = _iTst;
28 - if({inum == @){
29
38 my5tring = "The number is @";
31
32 :
33~ if(inum > @ && inum < 1@){
34 myString = "The number is small”;
35 1
36~ glse if(inum »>= 18 &% inum < 18@) {
37
38 my5tring = "The number is big";
39
48 x
47 - glse if(inum >= 188 &% inum < 1@88) {
42
43 mystring = "The number is way big";
44
45 3
46 - glse if{inum >= 1088 &% inum < 999993) {
47
48 mystring = "The number is hugs";
45
58 T
51~ else{
52 mystring = "The number is way huge and out of sight™;
53 .
54 return myString;
55
56 3
57
58 1

14

Coding-Bootcamps.com

Mapping Types

Mapping is similar to hash tables, in that data can be accessed with a key
Mappings are data structures stored with key, value pairs.
Mappings syntax: mapping(key => value)
customers(1,”Mark”, “Smith”, mark@yahoo.com)

pragma solidity @.5.1;] I

= contract MyMappingContract {

5 ffarray to keep track of several people
— mapping{uint =» Customer) public customers;

K

g

9

o L e

uint256 public custCounter = @;
int256 alength;

1

11

12 ~ constructor() public {
13

14 }

15

16 ~ struct Customer {
17

18 uint256 _cid;
19 string _fname;
28 string _lname;
21 string il:

function addCustomer(string memory , string memory , string memory

26 custCounter++;
customers[custCounter] = Customer(custCounter, _fname, _lname, _email);

15

mailto:mark@yahoo.com

Coding-Bootcamps.com

Deployed Contracts 0}

MyhdappingContract at OxS2b_{ m =

addCustomer

_fname:

"hlarty”

_Iname:

"lones”

_email:

"martyEyahoo.com”

0 T

O:uint256: 3

O:uint256: _cid 3
1: string: _fname Marty
2:string: _Iname Jones

J:string: _email marty@yahoo.com

Conversion between native Types
There are two types of conversion: Implicit and Explicit

Implicit conversions
When an operator is used on different data types the compiler will make type conversion based on no

data loss.
If data will be lost, a compiler error is returned.

16

Coding-Bootcamps.com

The example below shows the conversion of different integer types.
&6~ contract datalon {
8 uint i1;
g uintd 1i2;
16 uint256 sum;
11 string s1= "7";

15 = function addIT(} public {|

17 sum = i1 + i2;

Explicit Conversions

Explicit data conversions are possible but may not always return the desired result.

Explicit conversions may sometimes produce truncated data.

Conversion of a signed integer to an unsigned integer is a reliable explicit conversion

15 = function addIT()} public {
16

17 sum = i1 + i2;

18 |

19 int v = -3;

el uint ¥ = uint{y);

21

22 XE+}

23 Y

If an integer is explicitly converted to a smaller type bits are cut off

uint3?z a = 8xl2345678;
uintls b uintlefa); // b will be Bx5678 now

17

Coding-Bootcamps.com

Events

Events are members of contracts

When events are called the event, arguments are stored in the transaction’s log
The logged information can be seen when the transaction is mined.

The log is part of the blockchain and remain with the block.

It is possible to subscribe to an event.

E\Itfnts are used with emit to manage writing to the log.

12 | event Sent{address from, address to, uwint amount);
14

15 = constructor() public {
16 issuer = msg.sender;
17 H
13
19
28 - function issue (address , uint } public {
21 Sfuint256 ¢ = a + b;
22 Jirequire(c »= a);
23 fireturn c;
24
25 require(msg.sender == issuer);
26 reguire({amount < 12868);
27 balance[receiver] += amount;
28 ¥
29
E1:] /f Sends an amount of existing coins
31 fF from any caller to an address
32~ function send({address , uint)} public {
33 require(amount <= balance[msg.sender], "Insufficient balance.");
34 balance[msg.sender] -= amount;
35 balance[receiver] += amount;
— emit Sent{msg.sender, receiver, amount);
37 payee = receiver;
33 paveeBalance = balance[receiver];
39 issuerBal = balance[msg.sendsr];
4
41 H
AT
logs L
b "from"™: "@x8971b5d216af52cd11c¥816bbobibesbdenfiSA2",
"‘tc-pic": "Ex3998db2d3i1862302a685eERBEb5 75507 2aBe2b5hTERafleedlece3iSeaicdizas”,
sent”,
et ": "BxCA35b7d915458EF SApaDeER68dF 2 FAMERFAT33C",
"1": "ex4Bes9Tbe513FdCTC541B6d907ES 2O de536402dE"
"2 "el",
"from”: "@xCA35b7d915458EF548abecasidFe2FA4ERTATI3C",
"to™: "Hx4BE897bES13FdCTCS4186d90TES29C4e536402dB",
"amount”: "8&",
"length™: 3
1
For Loop

For loops have a construction like Java, C++, JavaScript etc.
The For loop header consists of the initialization, the condition and the iterator
The expression in the loop will execute as long as the header condition is true.
function getStudentCnt() public view returns(uint count) {

return studentArray.length

18

Coding-Bootcamps.com

function studentLoop() public {
for (uint i=0; i<studentArray.length; i++) {
emit LogStudentGrade(studentArray[i], studentStructs[studentArrayl[i]].grade,
studentStructs[studentArrayl[i]].name);

25 - function studentLoop() public {
26
27 - for (uint i=@; i<studentfrray.length; i++) {
28 emit LogStudentGrade(studentarray[i], studentStructs[studentArray[i]].grade, studentStructs[studentirray[i]].name);
29 }
38 3
1 3
1 pragma solidity *~B8.5.2;
2
3
4 ~ contract newloopContract |

ﬂ function arith{uint o) public pure returns {uwint b} {
B b= 1;
— for (uint i = @8; 1 < a; i++)
&

b=2*%b + 188;

9 i
18 3}
Deployved Contracts i

newlLoopContract at Ox2b4._C3686 (mem n x

. -

Oruint256: b 304

While Loop

In Solidity, the while loop resembles the same behavior and functionality as Java, C++, JavaScript etc.
The While Loop has a header with a condition
while (k < toolsArray.length)

The expression in the while loop’s braces executes as long as the condition in the header is true.

19

Coding-Bootcamps.com

1 pragma solidity "8.5.1;

2

3~ contract Loop {

a

5

6 struct Student {

7 vint grade;

B string name;

9 H
1@
11 mapping{address => Student) public studentStructs;
12 address [] public studentArray;
13 int255 public nmCnt=8;

string [] public studentMamesArray;
15
16 - function studentMame() public [{
17 uint2s6 Jj:
15 string memory nm;
19
while (j « studentérray.length){
21
22 nm = student5Structs[studentirray[j]].name;
— studentNamedrray.pushi{nm) ;
24 j++;
25 nmCnt++;
25 T
27
28 ¥
Do While Loop

Do while loops again work like Java, C++, and JavaScript
Do While loops are similar to while loops except the condition is evaluated at the end of the loop
Therefore the loop expression will be executed at least once, even if the condition is false.

20

Coding-Bootcamps.com

1 pragmz solidity *B8.5.2;

2

3

4 ~ contract newloopContract {

5

6 wint256 public thefArea;

7 wint256 public rArea;

8

9 function arith{uint o) public pure returns {uint b)Y {
16 b = 1:
11 for (uint 1 = 8; 1 < a3 i++)
12 b=2%b + 188,
13 }
14
15
16 - function myArea{uint w, uint /) public returns (uint R
17
18 uint j = 5;
19 theArea = @;
28
21 - do {
22 myarea = w ¥ hj
23 raArea = myarea;
24
25 thebres = theldrea + J;
26
27 J--;3
28
29 ¥} while (j = @) ;
38
31
32 }
33
34 3

Switch Case

Just as in Java, C++, and JavaScript, the switch case is a simplified version of If .. else.
A value is completed to another value, or constant.

The case equal to the value is return and evaluation ends.

The default value is returned when the is no match

21

Coding-Bootcamps.com

1 pragma solidity *~8.5.2;

2

3

4 ~ contract newlLoopContract {

5

& uint256 public thefrea;

7 uint256 public rArea;

8

9 function searchfor{uvint25s } public pure returns (uint256 1K
16 - assembly {
11 switch myWal
12 case g { cVal := @ }
13 Case 11 eVal := 1}
14 case 2 { cVal := 2}
15 case 3 { cval := 3 }
16 case 4 { cVal := 4 }
17 Case 541 cWal := 5 }
18 case 6 { cVal := 6 }
19 case 74 cVal := 7 }
28 case 8 { cVal := 8 }
21
22 default { <Val := 118 }
23 T
24 ¥
e 1=

Handling Errors

Given that Solidity is transaction based it uses a state revert model when errors occur.
This prevents wasteful transactions from occurring.

Solidity does not currently support error catching.

Structures such as “try catch” may be added in subsequent versions.

Assert

The assert function is somewhat limited.

Assert is used for testing.

Example: Assert will return an exception if an invalid array index is requested.

Require

The require function is used to ensure only valid values are returned at runtime.
The valid values cover inputs, or contract state variables.

Example: require returns an error is a parameter return false when it should be true.

36~ function issue (address , uint } public i
37
33 vint256 j;
— reguire(receivedAssetsCnt » @, "Received Asset Count must be great than @");
48 ~ while {j < receivedfssetsCnt){
41 require(msg.sender == issuer);
42 require(amount < 188@);
43 balance[receiver] += amount;
a4
45 receivedissetsCnt++;
45 }
47
48 H

A

22

Coding-Bootcamps.com

) O:uint256:0

0 [vm] from:@xca3...a733c to:Mylontract.issue(address,uint256) @xcbb...84d39 value:® wel data:@x867...00864 logs:® hash:@xdfl...54c5a
transact to MyContract.issue errored: VM error. revect

revert The transaction has bee Tied to the initial state.

Reason provided by the contrac€; "Received Asset Count must be great than @". Debug the transaction to get more information.

Revert
The revert function also triggers exceptions and returns and error.

Revert will flag an error and reverse the call.
An optional message can be passed into Revert to return error details.

More Resources
To read more on blockchain and understand it in depth, the reading the following articles are highly
recommended:

e History and Evolution of Blockchain Technology from Bitcoin

e Overview of Blockchain evolution and phases from Ethereum to Hyperledger

e Comprehensive overview and analysis of blockchain use cases in many industries

e Qverview of blockchain technology and blockchain development

Also, the following are more tutorials and resources on Ethereum blockchain development.
e How to Write Ethereum Smart Contracts with Solidity in 1 hour
e How to Build Auction DApp with Ethereum and Solidity Programming Language
e How to Work with Ethereum Blockchain Applications through Remix IDE
o Certified Solidity Professional Certification exam
e Learn Ethereum: Build your own DApps with Ethereum and smart contracts book by Brian Wu

23

https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://coding-bootcamps.com/blog/overview-of-blockchain-evolution-and-phases-from-ethereum-to-hyperledger.html
https://blockchain.dcwebmakers.com/blog/comprehensive-overview-and-analysis-of-blockchain-use-cases-in-many-industries.html
https://weg2g.com/application/touchstonewords/article-overview-of-blockchain-technology-and-blockchain-development-career.php
https://myhsts.org/tutorial-learn-how-to-write-ethereum-smart-contracts-with-solidity-in-1-hour.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-work-with-ethereum-blockchain-applications-through-remix-ide.php
https://blockchain.dcwebmakers.com/blockchain-certifications.html
https://www.amazon.com/gp/product/B07Y9QRHDH/

