
Coding-Bootcamps.com

1

Introduction to Blockchain Development with Ethereum
Coding-Bootcamps.com

Session 6- Structure of Smart Contracts

The Solidity Contract:

Pragma
The pragma key word is used to invoke the certain compilers.
It is similar to the version being used.
Solidity contract writers will be different variations of pragma entries.
The pragma directive is entered as shown:
Using a “greater than or equal to compiler” indicator: pragma solidity >=0.4.22 <0.6.0;
This indicates that the contract needs at least compiler version 4.22 and is backward compatible to
compiler version 0.6.0.
The contract with the entry below, with the caret, ^, will not compile with a version earlier than 0.5.2
pragma solidity ^0.5.2;
Other variations: pragma solidity >=0.5.0 <0.7.0;

Comments
Code comments greatly increase the maintainability and understandability of your contract
Single line comments are indicated by “//”
Multiline comments are entered as : “/* ….. */”

Booleans
Booleans are either “true” or “false”
Booleans have the list of operators

Coding-Bootcamps.com

2

 ! negation

 $$ Logical conjunction, “and”

 || Logical disjunction, “or”

 == equality

 != inequality

In the function below, sumTotal will not be returned.

Integers
Solidity supports signed and unsigned integers

 int (signed)

 uint (unsigned)

Signed integers can be negative values.
Integers can be different sizes from 8 to 256 bits
For example:

 int8

 int256

 uint

Coding-Bootcamps.com

3

 uint256

The integer operators exhibit the same functionality and behavior as Java, C++ and JavaScript.
Operators:
Comparisons

 <=, less that or equal to

 <, less than

 ==, equality

 !=, inequality

 >=, greater than or equal to

 >, greater than

Arithmetic Operations

 +, addition

 -, subtraction

 *, multiplication

 /, division

 %, modulo

 **, exponential

Coding-Bootcamps.com

4

Strings

Strings are special type of arrays.

Strings are must be inside quotes or double quotes:

“hello “, ‘world ‘

Strings cannot be directly compared for equivalence in Solidity

However, strings’ hash values can be compared.

String hashes can be compared by adding a function that returns a Boolean of the status of the passed in

strings.

Next call the function with the strings to be compared passed in as parameters.

Coding-Bootcamps.com

5

Strings Literals using escape characters

\<newline>, escapes an actual newline

\\, backslash

\' , single quote

\" , double quote

\b, backspace

\f, form feed

\n, newline

\r, (carriage return)

\t, (tab)

\v, (vertical tab)

Coding-Bootcamps.com

6

Address
The address data type is meant for Ethereum addresses.
The are 2 versions of the address data type: address and address payable.
address: manages a 20 byte data type for an Ethereum address
address payable: same as address, but also including methods: transfer and send.
address payable supports sending Ether (Ethereum’s native currency) to another address.
address does not send Ether.
Operators:
Comparisons

 <=, less that or equal to

 <, less than

 ==, equality

 !=, inequality

 >=, greater than or equal to

 >, greater than

Currently select address is: 0xCA35b7d915458EF540aDe6068dFe2F44E8fa733c

Coding-Bootcamps.com

7

The Contract returns the current address as wallet1

Enums
Enums are an example of a user defined, or custom data type.
Enums are given a specific name and contain a list of data.
The data is 0 indexed.
When an enum is declared, it is declared with its name and it is typed as the enum.
The contract below sets the enum to connect, which is index 1,
The enum is initialized in the constructor as cancel, index 2, but the testCancel returns false

Coding-Bootcamps.com

8

Structs
Another custom data type is Structs
Structs contain a list of attribute datatypes that describe it.
struct Funder {
 address addr;
 uint amount;
}

Structs model a model a real-world entity that can be managed with a contract.
Structs are containers of multiple data members of its type.
Structs are used by other data structures such as Arrays and Mappings.

Coding-Bootcamps.com

9

Coding-Bootcamps.com

10

Global Variables
Ether Units
assert(1 wei == 1);
assert(1 szabo == 1e12);
assert(1 finney == 1e15);
assert(1 ether == 1e18);

Time Units

 1 == 1 seconds

 1 minutes == 60 seconds

 1 hours == 60 minutes

 1 days == 24 hours

 1 weeks == 7 days

Block and Transaction Properties

 blockhash(uint blockNumber) returns (bytes32): hash of the given block - only works for 256 most
recent, excluding current, blocks

 block.coinbase (address payable): current block miner’s address

 block.difficulty (uint): current block difficulty

 block.gaslimit (uint): current block gaslimit

 block.number (uint): current block number

 block.timestamp (uint): current block timestamp as seconds since Unix epoch

 gasleft() returns (uint256): remaining gas

 msg.data (bytes calldata): complete calldata

 msg.sender (address payable): sender of the message (current call)

 msg.sig (bytes4): first four bytes of the calldata (i.e. function identifier)

 msg.value (uint): number of wei sent with the message

 now (uint): current block timestamp (alias for block.timestamp)

 tx.gasprice (uint): gas price of the transaction

 tx.origin (address payable): sender of the transaction (full call chain)

Coding-Bootcamps.com

11

Arrays
Arrays are data structures where one variable of a certain data type, contains multiple values, in
different sections of memory.
Arrays can be fixed size, or dynamic.
Fixed size arrays can be declared at compile time.
Values can also be added or removed from the Array using member methods push and pop.
The array length is used to add length to the array.
Arrays are often built from structs.

Coding-Bootcamps.com

12

Coding-Bootcamps.com

13

Control Structures
if, else, while, do, for, break, continue, return with the same behavior, rules and functionality as Java,
C++, and JavaScript.
In Solidity, Parentheses cannot be omitted for conditionals, but curly braces can be omitted around
single-statement bodies.
If (x < 0)
 sum = a + b;

if (expression 1) {
 Statement(s) to be executed if expression 1 is true
} else if (expression 2) {
 Statement(s) to be executed if expression 2 is true
} else if (expression 3) {
 Statement(s) to be executed if expression 3 is true
} else {
 Statement(s) to be executed if no expression is true
}

 return statement ends the function and returns control to where the function was called

 break just breaks the loop & return gets control back to the caller method

 continue statement ends program execution of the current iteration of a loop statement but does
not stop execution of the loop statement.

Coding-Bootcamps.com

14

If … else if … else example:

Coding-Bootcamps.com

15

Mapping Types
Mapping is similar to hash tables, in that data can be accessed with a key
Mappings are data structures stored with key, value pairs.
Mappings syntax: mapping(key => value)
customers(1,”Mark”, “Smith”, mark@yahoo.com)

mailto:mark@yahoo.com

Coding-Bootcamps.com

16

Conversion between native Types
There are two types of conversion: Implicit and Explicit

Implicit conversions
When an operator is used on different data types the compiler will make type conversion based on no
data loss.
If data will be lost, a compiler error is returned.

Coding-Bootcamps.com

17

The example below shows the conversion of different integer types.

Explicit Conversions
Explicit data conversions are possible but may not always return the desired result.
Explicit conversions may sometimes produce truncated data.
Conversion of a signed integer to an unsigned integer is a reliable explicit conversion

If an integer is explicitly converted to a smaller type bits are cut off

Coding-Bootcamps.com

18

Events
Events are members of contracts
When events are called the event, arguments are stored in the transaction’s log
The logged information can be seen when the transaction is mined.
The log is part of the blockchain and remain with the block.
It is possible to subscribe to an event.
Events are used with emit to manage writing to the log.

For Loop
For loops have a construction like Java, C++, JavaScript etc.
The For loop header consists of the initialization, the condition and the iterator
The expression in the loop will execute as long as the header condition is true.
function getStudentCnt() public view returns(uint count) {
 return studentArray.length
 }

v

v

Coding-Bootcamps.com

19

function studentLoop() public {
 for (uint i=0; i<studentArray.length; i++) {
 emit LogStudentGrade(studentArray[i], studentStructs[studentArray[i]].grade,
 studentStructs[studentArray[i]].name);
 }
 }

While Loop
In Solidity, the while loop resembles the same behavior and functionality as Java, C++, JavaScript etc.
The While Loop has a header with a condition
while (k < toolsArray.length)
The expression in the while loop’s braces executes as long as the condition in the header is true.

Coding-Bootcamps.com

20

Do While Loop
Do while loops again work like Java, C++, and JavaScript
Do While loops are similar to while loops except the condition is evaluated at the end of the loop
Therefore the loop expression will be executed at least once, even if the condition is false.

Coding-Bootcamps.com

21

Switch Case
Just as in Java, C++, and JavaScript, the switch case is a simplified version of If .. else.
A value is completed to another value, or constant.
The case equal to the value is return and evaluation ends.
The default value is returned when the is no match

Coding-Bootcamps.com

22

Handling Errors
Given that Solidity is transaction based it uses a state revert model when errors occur.
This prevents wasteful transactions from occurring.
Solidity does not currently support error catching.
Structures such as “try catch” may be added in subsequent versions.

Assert
The assert function is somewhat limited.
Assert is used for testing.
Example: Assert will return an exception if an invalid array index is requested.

Require
The require function is used to ensure only valid values are returned at runtime.
The valid values cover inputs, or contract state variables.
Example: require returns an error is a parameter return false when it should be true.

Coding-Bootcamps.com

23

Revert
The revert function also triggers exceptions and returns and error.
Revert will flag an error and reverse the call.
An optional message can be passed into Revert to return error details.

More Resources
To read more on blockchain and understand it in depth, the reading the following articles are highly
recommended:

 History and Evolution of Blockchain Technology from Bitcoin

 Overview of Blockchain evolution and phases from Ethereum to Hyperledger

 Comprehensive overview and analysis of blockchain use cases in many industries

 Overview of blockchain technology and blockchain development

Also, the following are more tutorials and resources on Ethereum blockchain development.

 How to Write Ethereum Smart Contracts with Solidity in 1 hour

 How to Build Auction DApp with Ethereum and Solidity Programming Language

 How to Work with Ethereum Blockchain Applications through Remix IDE

 Certified Solidity Professional Certification exam

 Learn Ethereum: Build your own DApps with Ethereum and smart contracts book by Brian Wu

https://myhsts.org/tutorial-history-and-evolution-of-blockchain-technology-from-bitcoin.php
https://coding-bootcamps.com/blog/overview-of-blockchain-evolution-and-phases-from-ethereum-to-hyperledger.html
https://blockchain.dcwebmakers.com/blog/comprehensive-overview-and-analysis-of-blockchain-use-cases-in-many-industries.html
https://weg2g.com/application/touchstonewords/article-overview-of-blockchain-technology-and-blockchain-development-career.php
https://myhsts.org/tutorial-learn-how-to-write-ethereum-smart-contracts-with-solidity-in-1-hour.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-build-auction-dapp-with-ethereum-and-solidity-programming-language.php
https://myhsts.org/tutorial-learn-how-to-work-with-ethereum-blockchain-applications-through-remix-ide.php
https://blockchain.dcwebmakers.com/blockchain-certifications.html
https://www.amazon.com/gp/product/B07Y9QRHDH/

