
1

Intro to Go Programming Language

By coding-bootcamps.com

Course Outline

1. Golang Installation, Setup, GOPATH, and Go Workspace

 Installations on Linux, Mac or Windows

 The Go tool

 GOPATH, Go Workspace, and Go Code Organization

2. Hello Golang: Writing your First Golang Program

3. Golang Variables, Zero Values, and Type Inference

 Introduction to variables and Data Types

 Declaring variables

 Zero values

 Declaring variables with initial value

 Type inference

 Short declaration

4. Golang Basic Types, Operators and Type Conversion

 Numeric Types

 Operations on Numeric Types

 Booleans

 Operations on Boolean Types

 Complex Numbers

 Operations on complex numbers

 Strings

 Type Conversion

2

5. Working with Constants in Golang

 Declaring a Constant

 Typed and Untyped Constants

 Constants and Type inference: Default Type

 Constant expressions

 Constant Expression Examples

6. Golang Control Flow Statements: If, Switch and For

 If Statement

 If-Else Statement

 If-Else-If chain

 If with a short statement

 Switch statement

 Switch with a short statement

 Combining multiple Switch cases

 Switch with no expression

 For Loop

7. Introduction to Functions in Golang

 Declaring and calling functions in Golang

 Functions with multiple return values

 Returning an error value from a function

 Functions with named return values

 Blank Identifier

8. A Beginner Guide to Packages in Golang

 Go Package

 The main package and main() function

 Importing Packages

 Creating and managing custom Packages

 Adding 3rd party Packages

 Manually installing Packages

3

9. Working with Arrays in Golang

 Declaring an Array in Golang

 Accessing array elements by their index

 Initializing an array using an array literal

 Letting Go compiler infer the length of the array

 Exploring more about Golang arrays

 Iterating over an array in Golang

 Iterating over an array using range

 Multidimensional arrays in Golang

10. Introduction to Slices in Golang

 Declaring a Slice

 Creating and Initializing a Slice

 Modifying a slice

 Length and capacity of a Slice

 Creating a slice using the built-in make() function

 Zero value of slices

 Slice functions

 Slice of slices

 Iterating over a slice

4

Session 1- Golang Installation, Setup, GOPATH,

and Go Workspace

Go is an open source, statically typed, compiled programming language built by
Google. It combines the best of both statically typed and dynamically typed
languages and gives you the right mixture of efficiency and ease of
programming. It is primarily suited for building fast, efficient, and reliable server
side applications.

Following are some of the most noted features of Go:

 Safety : Both Type safety and Memory safety.
 Good support for Concurrency and communication.
 Efficient and latency-free Garbage Collection
 High speed compilation
 Excellent Tooling support

This is the first session of our class on Go. In this session, you’ll learn how to
install Go in your system and set up your development environment for Go
projects.

Installing Go

Go binary distributions are available for all major operating systems like Linux,
Windows, and MacOS. It’s super simple to install Go from the binary
distributions.

If a binary distribution is not available for your operating system, you can
try installing Go from source.

Mac OS X

Using Homebrew

The easiest way to install Go in Mac OS is by using Homebrew -

brew install go

Using macOS package installer

https://golang.org/doc/install/source
https://brew.sh/

5

Download the latest Go package (.pkg) file from Go’s official downloads page.
Open the package and follow the on-screen instructions to install Go. By default,
Go will be installed in /usr/local/go.

Linux

Download the Linux distribution from Go’s official download page and extract it
into /usr/local directory.

sudo tar -C /usr/local -xzf go$VERSION.$OS-$ARCH.tar.gz

Next, add the /usr/local/go/bin directory to your PATH environment variable. You can
do this by adding the following line to your ~/.bash_profile file -

export PATH=$PATH:/usr/local/go/bin

You can also use any other directory like /opt/go instead of /usr/local for installing
Go.

Windows

Download the Windows MSI installer file from Go’s official download page. Open
the installer and follow the on-screen instructions to install Go in your windows
system. By default, the installer installs Go in C:\Go

The Go tool

The Go distribution comes bundled with the go tool. It is a command line tool that
lets you automate common tasks such as downloading and installing
dependencies, building and testing your code, and much more.

After installing Go by following the instructions in the previous section, you should

be able to run the Go tool by typing go in the command line -

$ go

Go is a tool for managing Go source code.

https://golang.org/dl/
https://golang.org/dl/
https://golang.org/dl/
https://golang.org/cmd/go/

6

Usage:

 go command [arguments]

The commands are:

 build compile packages and dependencies

 clean remove object files

 doc show documentation for package or symbol

 env print Go environment information

 bug start a bug report

 fix run go tool fix on packages

 fmt run gofmt on package sources

 generate generate Go files by processing source

 get download and install packages and dependencies

 install compile and install packages and dependencies

 list list packages

 run compile and run Go program

 test test packages

 tool run specified go tool

 version print Go version

 vet run go tool vet on packages

Use "go help [command]" for more information about a command.

Additional help topics:

 c calling between Go and C

7

 buildmode description of build modes

 filetype file types

 gopath GOPATH environment variable

 environment environment variables

 importpath import path syntax

 packages description of package lists

 testflag description of testing flags

 testfunc description of testing functions

Use "go help [topic]" for more information about that topic.

GOPATH, Go Workspace, and Go Code Organization

Go requires you to organize your code in a specific way.

By convention, all your Go code and the code you import, must reside in a
single workspace. A workspace is nothing but a directory in your file system
whose path is stored in the environment variable GOPATH .

Note that, after the introduction of Go modules in Go 1.11, you’re no longer
required to store your Go code in the Go workspace. You can create your Go
project in any directory outside of GOPATH. The following explanation of Go
workspace is given for historical reasons and the fact that it’s still valid. You can
skip this section if you want.
The workspace directory contains the following sub directories at its root:

 src : contains Go source files.

The src directory typically contains many version control repositories

containing one or more Go packages. Every Go source file belongs to a
package. You generally create a new subdirectory inside your repository for
every separate Go package.

 bin : contains the binary executables.

The Go tool builds and installs binary executables to this directory. All Go
programs that are meant to be executables must contain a source file with a

8

special package called main and define the entry point of the program in a

special function called main() .

 pkg : contains Go package archives (.a).

All the non-executable packages (shared libraries) are stored in this directory.
You cannot run these packages directly as they are not binary files. They are
typically imported and used inside other executable packages.

Setting GOPATH

The GOPATH environment variable specifies the location of your workspace. By
default, the GOPATH is assumed to be $HOME/go on Unix systems

and %USERPROFILE%\go on Windows. If you’re happy with this path then you don’t

need to do anything. You can just create your workspace directory
named go inside the home folder and start writing Go code.

If you want to use a custom location as your workspace, you can set
the GOPATH environment variable by following the instructions below -

Unix Systems (Linux and macOS)

For setting GOPATH in bash shells, add the following line to the ~/.bash_profile file -

export GOPATH=$HOME/go

If you use Zsh shell, then you need to add the above line to ~/.zshrc file.

Windows System

Let’s say that you want to have your workspace directory at C:\go-workspace . Here

is how you can set the GOPATH environment variable to use this workspace

location:

 Create the workspace folder at C:\go-workspace .

 Right click on Start → click Control Panel → Select System and
Security → click on System.

 From the menu on the left, select the Advanced systems settings.

9

 Click the Environment Variables button at the bottom.

 Click New from the User variables section.

 Type GOPATH into the Variable name field.

 Type C:\go-workspace into the Variable value field.

 Click OK.

Note that, GOPATH must be different than the path of your Go installation.

Testing your Go installation with the Hello

World program

First, make sure that you have created the Go workspace directory at $HOME/go .

Next, create a new directory src/hello inside your workspace. Finally, create a file

named hello.go with the following code:

Note: after Go 1.11 onwards, you can also create and run the program outside of
Go workspace.

package main

import "fmt"

func main() {

 fmt.Printf("Hello, World\n")

}

$ cd $HOME/go/src/hello

$ ls

hello.go

The easiest way to run the above program is using the go run command -

10

$ go run hello.go

Hello, World

Building an executable binary using go build

The go run command compiles and runs your program at one go. However, if you

want to produce a binary from your Go source that can be run as a standalone
executable without using the Go tool, then use the go build command -

$ cd $HOME/go/src/hello

$ go build

$ ls

hello hello.go

The go build command creates an executable binary with the same name as the

name of your immediate package (hello). You can run the binary file like so -

$./hello

Hello, World

Installing the package into the bin directory using go install

You can use the go install command to build and install the executable binary into

your workspace’s bin directory -

$ cd $HOME/go/src/hello

$ go install

$ cd $HOME/go/bin

$ ls

hello

11

$./hello

Hello, World

You can also add the $HOME/go/bin directory to the PATH variable to run go

executables from any location.

Don’t forget to check out: go help run , go help build , go help install .

Session 2- Hello Golang: Writing your first

Golang Program

When we start learning a new programming language, we typically start by
writing the classic “Hello, World” program.

So Let’s write the “Hello, World” program in Go and understand how it works.

Open your favorite text editor, create a new file named hello.go , and type in the

following code:

// My first Program

package main

import "fmt"

func main() {

 fmt.Println("Hello, World")

}

You can run the above program using go run command like so -

12

$ go run hello.go

Hello, World

The go run command does two things - It first compiles the program to machine

code and then runs the compiled code.

If however, you want to produce a standalone binary executable from your Go

source that can be run without using the Go tool, then use the go

build command:

$ go build hello.go

$ ls

hello hello.go

You may now run the built binary file like this -

$./hello

Hello, World

Understanding the internals of the “Hello, World”
program

Let’s go through each line of the “Hello, World” program one by one and
understand what it does-

Line 1: The first line that starts with // is a comment -

// My first Program

Comments are ignored by the Go compiler. They are used to make it easier
for others to understand your code.

Go supports two different styles of comments:

13

1. Single-line comment

2. // This is a Single line Comment. Everything in this line is ignored by the compiler

3. Multi-line comment

4. /*

5. This is a Multi line Comment.

6. As the name suggests, It can span multiple lines.

7. */

Line 2: The second line is a package declaration:

package main

Every Go program starts with a package declaration. Packages are used to
organize related go source code files into a single unit and make them
reusable.

The package “main” is a special go package that is used with programs that
are meant to be executable.

There are two types of programs in Go - Executable Programs and Libraries.
Executable Programs are programs that can be run from the command line.
Libraries are reusable pieces of code that are used by other programs to
perform some task.

Line 3: The third line is an import statement:

import "fmt"

The import keyword is used to import reusable pieces of code from other

packages to use in our program.

The “fmt” package contains code for dealing with I/O.

14

Line 4: The fourth line is a function declaration:

func main() {

 // ...

}

A function is a unit of code that contains one or more instructions to perform a
task. We typically break a program into smaller functions that take some
input, do some processing on the input, and produce an output.

A function in go is declared using the func keyword.

The main() function is the entry point of an executable program in Go. It is the

first thing that is invoked when you run an executable program.

Line 5: This line contains a call to the Println() function of the fmt package:

fmt.Println("Hello, World")

We pass the String “Hello, World” to the Println() function which prints it to the

standard output along with a new line.

Session 3 Golang Variables, Zero Values, and

Type Inference

Introduction to Variables and Data Types

Every program needs to store some data/information in memory. The data is
stored in memory at a particular memory location.

15

A variable is just a convenient name given to a memory location where the data
is stored. Apart from a name, every variable also has an associated type.

Data Types or simply Types, categorize related set of data, define the way they
are stored, the range of values they can hold, and the operations that can be
done on them.

For example, Golang has a data type called int8. It represents 8-bit integers
whose values can range from -128 to 127. It also defines the operations that can
be done on int8 data type such as addition, subtraction, multiplication, division
etc.

We also have an int data type in Golang whose size is machine dependent. It is
32 bits wide on a 32-bit system and 64 bits wide on a 64-bit system.

Other examples of data types in Golang are bool, string, float34, float64 etc. You’ll
learn more about these data types in our other sessions. We gave a brief idea of
data types here because it is necessary to understand them before we dive deep
into Golang variables.

Golang Variables in depth

Declaring Variables

In Golang, We use the var keyword to declare variables -

var firstName string

var lastName string

16

var age int

You can also declare multiple variables at once like so -

var (

 firstName string

 lastName string

 age int

)

You can even combine multiple variable declarations of the same type with
comma -

var (

 firstName, lastName string

 age int

)

Zero values

Any variable declared without an initial value will have a zero-value depending
on the type of the variable-

Type Zero Value

Bool false

string ””

int, int8, int16 etc. 0

17

Type Zero Value

float32, float64 0.0

The example below demonstrates the concept of zero values:

package main

import "fmt"

func main() {

 var (

 firstName, lastName string

 age int

 salary float64

 isConfirmed bool

)

 fmt.Printf("firstName: %s, lastName: %s, age: %d, salary: %f, isConfirmed: %t\n",

 firstName, lastName, age, salary, isConfirmed)

}

Output

firstName: , lastName: , age: 0, salary: 0.000000, isConfirmed: false

Declaring Variables with initial Value

Here is how you can initialize variables during declaration -

var firstName string = "Satoshi"

18

var lastName string = "Nakamoto"

var age int = 35

You can also use multiple declarations like this -

var (

 firstName string = "Satoshi"

 lastName string = "Nakamoto"

 age int = 35

)

Or even combine multiple variable declarations of the same type with comma
and initialize them like so -

var (

 firstName, lastName string = "Satoshi", "Nakamoto"

 age int = 35

)

Type inference

Although Go is a statically typed language, It doesn’t require you to explicitly
specify the type of every variable you declare.

When you declare a variable with an initial value, Golang automatically infers the
type of the variable from the value on the right-hand side. So you need not
specify the type when you’re initializing the variable at the time of declaration -

package main

import "fmt"

func main() {

19

 var name = "Rajeev Singh" // Type declaration is optional here.

 fmt.Printf("Variable 'name' is of type %T\n", name)

}

Output

Variable 'name' is of type string

In the above example, Golang automatically infers the type of the variable
as string from the value on the right-hand side. If you try to reassign the variable
to a value of some other type, then the compiler will throw an error -

var name = "Raj johnson" // Type inferred as `string`

name = 1234 // Compiler Error

Type inference allows us to declare and initialize multiple variables of different
data types in a single line like so -

package main

import "fmt"

func main() {

 // Multiple variable declarations with inferred types

 var firstName, lastName, age, salary = "John", "Maxwell", 28, 50000.0

 fmt.Printf("firstName: %T, lastName: %T, age: %T, salary: %T\n",

 firstName, lastName, age, salary)

}

Output

firstName: string, lastName: string, age: int, salary: float64

Short Declaration

20

Go provides a short variable declaration syntax using := operator. It is a
shorthand for declaring and initializing a variable (with inferred type).

For example, the shorthand for var name = "Raj" is name := "Raj". Here is a
complete example -

package main

import "fmt"

func main() {

 // Short variable declaration syntax

 name := "Raj johnson"

 age, salary, isProgrammer := 35, 50000.0, true

 fmt.Println(name, age, salary, isProgrammer)

}

Output

Raj johnson 35 50000 true

Note that, a Short variable declaration can only be used inside a function.
Outside a function, every statement needs to begin with a keyword
like var, func etc, and therefore, := operator is not available.

Session 4 Golang Basic Types, Operators and

Type Conversion

Go is a statically typed programming language. Every variable in Golang has an
associated type.

Data types classify a related set of data. They define how the data is stored in
memory, what are the possible values that a variable of a particular data type can
hold, and the operations that can be done on them.

Golang has several built-in data types for representing common values like
numbers, booleans, strings etc. In this session, We will look at all these basic
data types one by one and understand how they work.

21

Numeric Types

Numeric types are used to represent numbers. They can be classified into
Integers and Floating point types -

1. Integers

Integers are used to store whole numbers. Go has several built-in integer types
of varying size for storing signed and unsigned integers -

Signed Integers

Type Size Range

int8 8 bits -128 to 127

int16 16 bits -215 to 215 -1

int32 32 bits -231 to 231 -1

int64 64 bits -263 to 263 -1

int Platform dependent Platform dependent

The size of the generic int type is platform dependent. It is 32 bits wide on a 32-
bit system and 64-bits wide on a 64-bit system.

Unsigned Integers

Type Size Range

uint8 8 bits 0 to 255

uint16 16 bits 0 to 216 -1

uint32 32 bits 0 to 232 -1

22

Type Size Range

uint64 64 bits 0 to 264 -1

Uint Platform dependent Platform dependent

The size of uint type is platform dependent. It is 32 bits wide on a 32-bit system
and 64-bits wide on a 64-bit system.

When you are working with integer values, you should always use the int data
type unless you have a good reason to use the sized or unsigned integer types.

In Golang, you can declare octal numbers using prefix 0 and hexadecimal
numbers using the prefix 0x or 0X. Following is a complete example of integer
types -

package main

import "fmt"

func main() {

 var myInt8 int8 = 97

 /*

 When you don't declare any type explicitly, the type inferred is `int`

 (The default type for integers)

 */

 var myInt = 1200

 var myUint uint = 500

 var myHexNumber = 0xFF // Use prefix '0x' or '0X' for declaring hexadecimal numbers

 var myOctalNumber = 034 // Use prefix '0' for declaring octal numbers

23

 fmt.Printf("%d, %d, %d, %#x, %#o\n", myInt8, myInt, myUint, myHexNumber, myOctalNumber)

}

Output

97, 1200, 500, 0xff, 034

Integer Type aliases

Golang has two additional integer types called byte and rune that are aliases
for uint8 and int32 data types respectively -

Type Alias For

byte uint8

rune int32

In Go, the byte and rune data types are used to distinguish characters from
integer values.

Golang doesn’t have a char data type. It uses byte and rune to represent
character values. The byte data type represents ASCII characters and
the rune data type represents a more broader set of Unicode characters that are
encoded in UTF-8 format.

Characters are expressed in Golang by enclosing them in single quotes like
this: 'A'.

The default type for character values is rune. That means, if you don’t declare a
type explicitly when declaring a variable with a character value, then Go will infer
the type as rune -

var firstLetter = 'A' // Type inferred as `rune` (Default type for character values)

You can create a byte variable by explicitly specifying the type -

https://en.wikipedia.org/wiki/ASCII
http://www.unicode.org/
http://www.utf-8.com/

24

var lastLetter byte = 'Z'

Both byte and rune data types are essentially integers. For example,
a byte variable with value 'a' is converted to the integer 97.

Similarly, a rune variable with a unicode value '♥' is converted to the
corresponding unicode codepoint U+2665, where U+ means unicode and the
numbers are hexadecimal, which is essentially an integer.

package main

import "fmt"

func main() {

 var myByte byte = 'a'

 var myRune rune = '♥'

 fmt.Printf("%c = %d and %c = %U\n", myByte, myByte, myRune, myRune)

}

Output

a = 97 and ♥ = U+2665

In the above example, we have printed the variable myByte in character and
decimal format, and the variable myRune in character and Unicode format.

2. Floating Point Types

Floating point types are used to store numbers with a decimal component (ex -
1.24, 4.50000). Go has two floating point types - float32 and float64.

 float32 occupies 32 bits in memory and stores values in single-precision
floating point format.

 float64 occupies 64 bits in memory and stores values in double-precision
floating point format.

25

The default type for floating point values is float64. So when you initialize a
floating point variable with an initial value without specifying a type explicitly, the
compiler will infer the type as float64 -

var a = 9715.635 // Type inferred as `float64` (the default type for floating-point numbers)

Operations on Numeric Types

Go provides several operators for performing operations on numeric types -

 Arithmetic Operators: +, -, *, /, %

 Comparison Operators: ==, !=, <, >, <=, >=

 Bitwise Operators: &, |, ^, <<, >>

 Increment and Decrement Operators: ++, --

 Assignment Operators: +=, -=, *=, /=, %=, <<=, >>=, &=, |=, ^=

Here is an example demonstrating some of the above operators -

package main

import (

 "fmt"

 "math"

)

func main() {

 var a, b = 4, 5

 var res1 = (a + b) * (a + b)/2 // Arithmetic operations

 a++ // Increment a by 1

 b += 10 // Increment b by 10

26

 var res2 = a ^ b // Bitwise XOR

 var r = 3.5

 var res3 = math.Pi * r * r // Operations on floating-point type

 fmt.Printf("res1 : %v, res2 : %v, res3 : %v\n", res1, res2, res3)

}

Output

res1 : 40, res2 : 10, res3 : 38.48451000647496

Booleans

Go provides a data type called bool to store boolean values. It can have two
possible values - true and false.

var myBoolean = true

var anotherBoolean bool = false

Operations on Boolean Types

You can use the following operators on boolean types -

Logical Operators:

 && (logical conjunction, “and”)
 || (logical disjunction, “or”)
 ! (logical negation)

Equality and Inequality: ==, !=

The operators && and || follow short-circuiting rules. That means, in the
expression E1 && E2, if E1 evaluates to false then E2 won’t be evaluated.

27

Similarly, in the expression E1 || E2, if E1 evaluates to true then E2 won’t be
evaluated.

Here is an example of Boolean types-

package main

import "fmt"

func main() {

 var truth = 3 <= 5

 var falsehood = 10 != 10

 // Short Circuiting

 var res1 = 10 > 20 && 5 == 5 // Second operand is not evaluated since first evaluates to false

 var res2 = 2*2 == 4 || 10%3 == 0 // Second operand is not evaluated since first evaluates to
true

 fmt.Println(truth, falsehood, res1, res2)

}

Output

true false false true

Complex Numbers

Complex numbers are one of the basic types in Golang. Go has two complex
types of different sizes -

 complex64: both real and imaginary parts are of float32 type.
 complex128: both real and imaginary parts are of float64 type.

The default type for a complex number in golang is complex128. You can create a
complex number like this -

28

var x = 5 + 7i // Type inferred as `complex128`

Go also provides a built-in function named complex for creating complex
numbers. If you’re creating a complex number with variables instead of literals,
then you’ll need to use the complex function -

var a = 3.57

var b = 6.23

// var c = a + bi won't work. Create the complex number like this -

var c = complex(a, b)

Note that, both real and imaginary parts of the complex number must be of the
same floating point type. If you try to create a complex number with different real
and imaginary part types, then the compiler will throw an error -

var a float32 = 4.92

var b float64 = 7.38

/*

 The Following statement Won't compile.

 (Both real and imaginary parts must be of the same floating-point type)

*/

var c = complex(a, b) // Compiler Error

Operations on complex numbers

You can perform arithmetic operations like addition, subtraction, multiplication,
and division on complex numbers -

package main

import "fmt"

29

func main() {

 var a = 3 + 5i

 var b = 2 + 4i

 var res1 = a + b

 var res2 = a - b

 var res3 = a * b

 var res4 = a / b

 fmt.Println(res1, res2, res3, res4)

}

Output

(5+9i) (1+1i) (-14+22i) (1.3-0.1i)

Strings

In Go, a string is a sequence of bytes.

Strings in Golang are declared either using double quotes as in "Hello World" or
back ticks as in `Hello World` .

// Normal String (Can not contain newlines, and can have escape characters like `\n`, `\t` etc)

var name = "Steve Jobs"

// Raw String (Can span multiple lines. Escape characters are not interpreted)

var bio = `Steve Jobs was an American entrepreneur and inventor.

 He was the CEO and co-founder of Apple Inc.`

30

Double-quoted strings cannot contain newlines and they can have escape
characters like \n, \t etc. In double-quoted strings, a \n character is replaced with
a newline, and a \t character is replaced with a tab space, and so on.

Strings enclosed within back ticks are raw strings. They can span multiple lines.
Moreover, Escape characters don’t have any special meaning in raw strings.

package main

import "fmt"

func main() {

 var website = "\thttps://coding-bootcamps.com\t\n"

 var siteDescription = `\t\tCoding Bootcamps is a programming school where you can find

 practical guides and tutorials on programming languages,

 web development, and desktop app development.\t\n`

 fmt.Println(website, siteDescription)

}

Output

 https://coding-bootcamps.com

 \t\tCoding Bootcamps is a programming school where you can find

 practical guides and tutorials on programming languages,

 web development, and desktop app development.\t\n

That’s all about Strings in this session. But there is a lot more to learn about
strings which include string indexing, handling unicode characters, performing
various operations like string concatenation, split, join etc. We’ll learn about them
in a future session.

Type Conversion

31

Golang has a strong type system. It doesn’t allow you to mix numeric types in an
expression. For example, You cannot add an int variable to a float64 variable or
even an int variable to an int64 variable. You cannot even perform an assignment
between mixed types -

var a int64 = 4

var b int = a // Compiler Error (Cannot use a (type in64) as type int in assignment)

var c int = 500

var result = a + c // Compiler Error (Invalid Operation: mismatched types int64 and int)

Unlike other statically typed languages like C, C++, and Java, Go doesn’t provide
any implicit type conversion.

.

All right! So we cannot add, subtract, compare or perform any kind of operation
on two different types even if they are numeric. But what to do if we need to
perform such operations?

Well, you’ll need to explicitly cast the variables to the target type -

var a int64 = 4

var b int = int(a) // Explicit Type Conversion

var c float64 = 6.5

// Explicit Type Conversion

var result = float64(b) + c // Works

The general syntax for converting a value v to a type T is T(v). Here are few more
examples -

var myInt int = 65

32

var myUint uint = uint(myInt)

var myFloat float64 = float64(myInt)

Session 5- Working with Constants in Golang

Constants

In Golang, we use the term constant to represent fixed (unchanging) values such
as 5, 1.34, true, "Hello" etc.

Literals are constants

All the literals in Golang, be it integer literals like 5, 1000, or floating-point literals
like 4.76, 1.89, or boolean literals like true, false, or string literals
like "Hello", "John" are constants.

Constants Examples

integer constants 1000, 67413

floating-point constants 4.56, 128.372

boolean constants true, false

rune constants 'C', 'ä'

complex constants 2.7i, 3 + 5i

string constants "Hello", "Rajeev"

Declaring a Constant

33

Literals are constants without a name. To declare a constant and give it a name,
you can use the const keyword like so -

const myFavLanguage = "Python"

const sunRisesInTheEast = true

You can also specify a type in the declaration like this -

const a int = 1234

const b string = "Hi"

Multiple declarations in a single statement is also possible -

const country, code = "India", 91

const (

 employeeId string = "E101"

 salary float64 = 50000.0

)

Constants, as you would expect, cannot be changed. That is, you cannot re-
assign a constant to a different value after it is initialized -

const a = 123

a = 321 // Compiler Error (Cannot assign to constant)

Typed and Untyped Constants

Constants in golang are special. They work differently from how they work in
other languages. To understand why they are special and how they exactly work,
we need some background on Go’s type system. So let’s jump right into it -

34

Background

Go is a statically typed programming language. Which means that the type of
every variable is known or inferred by the compiler at compile time.

But it goes a step further with its type system and doesn’t even allow you to
perform operations that mix numeric types. For example, You cannot add
a float64 variable to an int, or even an int64 variable to an int-

var myFloat float64 = 21.54

var myInt int = 562

var myInt64 int64 = 120

var res1 = myFloat + myInt // Not Allowed (Compiler Error)

var res2 = myInt + myInt64 // Not Allowed (Compiler Error)

For the above operations to work, you’ll need to explicitly cast the variables so
that all of them are of the same type -

var res1 = myFloat + float64(myInt) // Works

var res2 = myInt + int(myInt64) // Works

If you’ve worked with other statically typed languages like C, C++ or Java, then
you must be aware that they automatically convert smaller types to larger types
whenever you mix them in any operation. For example, int can be automatically
converted to long, float or double.

So the obvious question is that - why doesn’t Go do the same? why doesn’t it
perform implicit type conversions like C, C++ or Java?

And here is what Go designers have to say about this (Quoting from Golang’s
official doc) -

The convenience of automatic conversion between numeric types in C is
outweighed by the confusion it causes. When is an expression unsigned? How
big is the value? Does it overflow? Is the result portable, independent of the
machine on which it executes? It also complicates the compiler; “the usual
arithmetic conversions” are not easy to implement and inconsistent across

https://golang.org/doc/faq#conversions
https://golang.org/doc/faq#conversions

35

architectures. For reasons of portability, we decided to make things clear and
straightforward at the cost of some explicit conversions in the code. (Excerpt
from Golang’s official doc)

All right! So Go doesn’t provide implicit type conversions and it requires us to do
explicit type casting whenever we mix variables of multiple types in an operation.

But how does Go’s type system work with constants? Given that all of the
following statements are valid in Golang -

var myInt32 int32 = 10

var myInt int = 10

var myFloat64 float64 = 10

var myComplex complex64 = 10

What is the type of the constant value 10 in the above examples? Moreover, if
there are no implicit type conversions in Golang, then wouldn’t we need to write
the above statements like -

var myInt32 int32 = int32(10)

var myFloat64 float64 = float64(10)

// etc..

Well, the answers to all these questions lay in the way constants are handled in
Golang. So let’s find out how they are handled.

Untyped Constants

Any constant in golang, named or unnamed, is untyped unless given a type
explicitly. For example, all of the following constants are untyped -

1 // untyped integer constant

4.5 // untyped floating-point constant

true // untyped boolean constant

https://golang.org/doc/faq#conversions
https://golang.org/doc/faq#conversions

36

"Hello" // untyped string constant

They are untyped even after you give them a name -

const a = 1

const f = 4.5

const b = true

const s = "Hello"

Now, you might be wondering that we will be using terms
like integer constant, string constant, and we are also saying that they are untyped.

Well yes, the value 1 is an integer, 4.5 is a float, and "Hello" is a string. But they are
just values. They are not given a fixed type yet, like int32 or float64 or string, that
would force them to obey Go’s strict type rules.

The fact that the value 1 is untyped allows us to assign it to any variable whose
type is compatible with integers -

var myInt int = 1

var myFloat float64 = 1

var myComplex complex64 = 1

Note that, although the value 1 is untyped, it is an untyped integer. So it can only
be used where an integer is allowed. You cannot assign it to a string or
a boolean variable for example.

Similarly, an untyped floating-point constant like 4.5 can be used anywhere a
floating-point value is allowed -

var myFloat32 float32 = 4.5

var myComplex64 complex64 = 4.5

Let’s now see an example of an untyped string constant-

37

In Golang, you can create a type alias using the type keyword like so-

type RichString string // Type alias of `string`

Given the strongly typed nature of Golang, you can’t assign a string variable to
a RichString variable-

var myString string = "Hello"

var myRichString RichString = myString // Won't work.

But, you can assign an untyped string constant to a RichString variable because it
is compatible with strings -

const myUntypedString = "Hello"

var myRichString RichString = myUntypedString // Works

Constants and Type inference: Default Type

Go supports type inference. That is, it can infer the type of a variable from the
value that is used to initialize it. So you can declare a variable with an initial
value, but without any type information, and Go will automatically determine the
type -

var a = 5 // Go compiler automatically infers the type of the variable `a`

But how does it work? Given that constants in Golang are untyped, what will be
the type of the variable a in the above example? Will it
be int8 or int16 or int32 or int64 or int?

Well, it turns out that every untyped constant in Golang has a default type. The
default type is used when we assign the constant to a variable that doesn’t have
any explicit type available.

Following are the default types for various constants in Golang -

38

Constants Default Type

integers (10, 76) int

floats (3.14, 7.92) float64

complex numbers (3+5i) complex128

characters ('a', '♠') rune

booleans (true, false) bool

strings (“Hello”) string

So, in the statement var a = 5, since no explicit type information is available, the
default type for integer constants is used to determine the type of a, which is int.

Typed Constants

In Golang, Constants are typed when you explicitly specify the type in the
declaration like this-

const typedInt int = 1 // Typed constant

Just like variables, all the rules of Go’s type system applies to typed constant.
For example, you cannot assign a typed integer constant to a float variable -

var myFloat64 float64 = typedInt // Compiler Error

With typed constants, you lose all the flexibility that comes with untyped
constants like assigning them to any variable of compatible type or mixing them
in mathematical operations. So you should declare a type for a constant only if
it’s absolutely necessary. Otherwise, just declare constants without a type.

Constant expressions

39

The fact that constants are untyped (unless given a type explicitly) allows you to
mix them in any expression freely.

So you can have a constant expression containing a mix of various untyped
constants as long as those untyped constants are compatible with each other -

const a = 5 + 7.5 // Valid

const b = 12/5 // Valid

const c = 'z' + 1 // Valid

const d = "Hey" + true // Invalid (untyped string constant and untyped boolean constant are not
compatible with each other)

The evaluation of constant expressions and their result follows certain rules. Let’s
look at those rules -

Rules for constant expressions

 A comparison operation between two untyped constants always outputs an
untyped boolean constant.

 const a = 7.5 > 5 // true (untyped boolean constant)

 const b = "xyz" < "uvw" // false (untyped boolean constant)

 For any other operation (except shift) -

o If both the operands are of the same type (ex - both are untyped integer
constants), the result is also of the same type. For example, the
expression 25/2 yields 12 not 12.5. Since both the operands are untyped
integers, the result is truncated to an integer.

o If the operands are of different type, the result is of the operand’s type that
is broader as per the rule: integer < rune < floating-point < complex.

 const a = 25/2 // 12 (untyped integer constant)

 const b = (6+8i)/2 // (3+4i) (untyped complex constant)

40

 Shift operation rules are a bit complex. First of all, there are some
requirements -

o The right operand of a shift expression must either have an unsigned
integer type or be an untyped constant that can represent a value of
type uint.

o The left operand must either have an integer type or be an untyped
constant that can represent a value of type int.

The rule - If the left operand of a shift expression is an untyped constant, the
result is an untyped integer constant; otherwise the result is of the same type
as the left operand.

const a = 1 << 5 // 32 (untyped integer constant)

const b = int32(1) << 4 // 16 (int32)

const c = 16.0 >> 2 // 4 (untyped integer constant) - 16.0 can represent a value of type
`int`

const d = 32 >> 3.0 // 4 (untyped integer constant) - 3.0 can represent a value of type
`uint`

const e = 10.50 << 2 // ILLEGAL (10.50 can't represent a value of type `int`)

const f = 64 >> -2 // ILLEGAL (The right operand must be an unsigned int or an
untyped constant compatible with `uint`)

Constant Expression Examples

Let’s see some examples of constant expressions -

package main

import "fmt"

func main() {

 var result = 25/2

 fmt.Printf("result is %v which is of type %T\n", result, result)

41

}

Output

result is 12 which is of type int

Since both 25 and 2 are untyped integer constants, the result is truncated to an
untyped integer 12.

To get the correct result, you can do one of the following:

// Use a float value in numerator or denominator

var result = 25.0/2

// Explicitly cast the numerator or the denominator

var result = float64(25)/2

Let’s see another example -

package main

import "fmt"

func main() {

 var result = 4.5 + (10 - 5) * (3 + 2)/2

 fmt.Println(result)

}

What will be the result of the above program?

Well, it’s not 17. The actual result of the above program is 16.5. Let’s go through
the evaluation order of the expression to understand why the result is 16.5

4.5 + (10 - 5) * (3 + 2)/2

 ↓

 4.5 + (5) * (3 + 2)/2

42

 ↓

 4.5 + (5) * (5)/2

 ↓

 4.5 + (25)/2

 ↓

 4.5 + 12

 ↓

 16.5

You got it right? The result is wrong because the expression 25/2 is evaluated
to 12.

To get the correct result, you can do one of the following:

// Use a float value in the numerator or denominator

var result = 4.5 + (10 - 5) * (3 + 2)/2.0

// Explicitly cast numerator or the denominator

var result = 4.5 + float64((10 - 5) * (3 + 2))/2

Session 6- Golang Control Flow Statements: If,

Switch and For

If Statement

If statements are used to specify whether a block of code should be executed or
not depending on a given condition.

Following is the syntax of if statements in Golang -

43

if(condition) {

 // Code to be executed if the condition is true.

}

Here is a simple example -

package main

import "fmt"

func main() {

 var x = 25

 if(x % 5 == 0) {

 fmt.Printf("%d is a multiple of 5\n", x)

 }

}

Output

25 is a multiple of 5

Note that, You can omit the parentheses () from an if statement in Golang, but
the curly braces {} are mandatory -

var y = -1

if y < 0 {

 fmt.Printf("%d is negative\n", y)

}

You can combine multiple conditions using short circuit operators && and || like so
-

var age = 21

44

if age >= 17 && age <= 30 {

 fmt.Println("My Age is between 17 and 30")

}

If-Else Statement

An if statement can be combined with an else block. The else block is executed if
the condition specified in the if statement is false -

if condition {

 // code to be executed if the condition is true

} else {

 // code to be executed if the condition is false

}

Here is a simple example -

package main

import "fmt"

func main() {

 var age = 18

 if age >= 18 {

 fmt.Println("You're eligible to vote!")

 } else {

 fmt.Println("You're not eligible to vote!")

 }

}

Output

45

You're eligible to vote!

If-Else-If Chain

if statements can also have multiple else if parts making a chain of conditions like
this -

package main

import "fmt"

func main() {

 var BMI = 21.0

 if BMI < 18.5 {

 fmt.Println("You are underweight");

 } else if BMI >= 18.5 && BMI < 25.0 {

 fmt.Println("Your weight is normal");

 } else if BMI >= 25.0 && BMI < 30.0 {

 fmt.Println("You're overweight")

 } else {

 fmt.Println("You're obese")

 }

}

Output

Your weight is normal

If with a short statement

An if statement in Golang can also contain a short declaration
statement preceding the conditional expression -

46

if n := 10; n%2 == 0 {

 fmt.Printf("%d is even\n", n)

}

The variable declared in the short statement is only available inside the if block
and it’s else or else-if branches -

if n := 15; n%2 == 0 {

 fmt.Printf("%d is even\n", n)

} else {

 fmt.Printf("%d is odd\n", n)

}

Note that, If you’re using a short statement, then you can’t use parentheses. So
the following code will generate a syntax error -

// You can't use parentheses when `if` contains a short statement

if (n := 15; n%2 == 0) { // Syntax Error

}

Switch Statement

A Switch statement takes an expression and matches it against a list of possible
cases. Once a match is found, it executes the block of code specified in the
matched case.

Here is a simple example of switch statement -

package main

import "fmt"

47

func main() {

 var dayOfWeek = 6

 switch dayOfWeek {

 case 1: fmt.Println("Monday")

 case 2: fmt.Println("Tuesday")

 case 3: fmt.Println("Wednesday")

 case 4: fmt.Println("Thursday")

 case 5: fmt.Println("Friday")

 case 6: {

 fmt.Println("Saturday")

 fmt.Println("Weekend. Yaay!")

 }

 case 7: {

 fmt.Println("Sunday")

 fmt.Println("Weekend. Yaay!")

 }

 default: fmt.Println("Invalid day")

 }

}

Output

Saturday

Weekend. Yaay!

Go evaluates all the switch cases one by one from top to bottom until a case
succeeds. Once a case succeeds, it runs the block of code specified in that case
and then stops (it doesn’t evaluate any further cases).

This is contrary to other languages like C, C++, and Java, where you explicitly
need to insert a break statement after the body of every case to stop the
evaluation of cases that follow.

48

If none of the cases succeed, then the default case is executed.

Switch with a short statement

Just like if, switch can also contain a short declaration statement preceding the
conditional expression. So you could also write the previous switch example like
this -

switch dayOfWeek := 6; dayOfWeek {

 case 1: fmt.Println("Monday")

 case 2: fmt.Println("Tuesday")

 case 3: fmt.Println("Wednesday")

 case 4: fmt.Println("Thursday")

 case 5: fmt.Println("Friday")

 case 6: {

 fmt.Println("Saturday")

 fmt.Println("Weekend. Yaay!")

 }

 case 7: {

 fmt.Println("Sunday")

 fmt.Println("Weekend. Yaay!")

 }

 default: fmt.Println("Invalid day")

}

The only difference is that the variable declared by the short statement
(dayOfWeek) is only available inside the switch block.

Combining multiple Switch cases

You can combine multiple switch cases into one like so -

49

package main

import "fmt"

func main() {

 switch dayOfWeek := 5; dayOfWeek {

 case 1, 2, 3, 4, 5:

 fmt.Println("Weekday")

 case 6, 7:

 fmt.Println("Weekend")

 default:

 fmt.Println("Invalid Day")

 }

}

Output

Weekday

This comes handy when you need to run a common logic for multiple cases.

Switch with no expression

In Golang, the expression that we specify in the switch statement is optional.
A switch statement without an expression is same as switch true. It evaluates all the
cases one by one, and runs the first case that evaluates to true -

package main

import "fmt"

func main() {

 var BMI = 21.0

 switch {

50

 case BMI < 18.5:

 fmt.Println("You're underweight")

 case BMI >= 18.5 && BMI < 25.0:

 fmt.Println("Your weight is normal")

 case BMI >= 25.0 && BMI < 30.0:

 fmt.Println("You're overweight")

 default:

 fmt.Println("You're obese")

 }

}

Switch without an expression is simply a concise way of writing if-else-if chains.

For Loop

A loop is used to run a block of code repeatedly. Golang has only one looping
statement - the for loop.

Following is the generic syntax of for loop in Go -

for initialization; condition; increment {

 // loop body

}

The initialization statement is executed exactly once before the first iteration of
the loop. In each iteration, the condition is checked. If the condition evaluates
to true then the body of the loop is executed, otherwise, the loop terminates.
The increment statement is executed at the end of every iteration.

Here is a simple example of a for loop -

package main

import "fmt"

51

func main() {

 for i := 0; i < 10; i++ {

 fmt.Printf("%d ", i)

 }

}

Output

0 1 2 3 4 5 6 7 8 9

Unlike other languages like C, C++, and Java, Go’s for loop doesn’t contain
parentheses, and the curly braces are mandatory.

Note that, both initialization and increment statements in the for loop are
optional and can be omitted

 Omitting the initialization statement

 package main

 import "fmt"



 func main() {

 i := 2

 for ;i <= 10; i += 2 {

 fmt.Printf("%d ", i)

 }

 }

 # Output

 2 4 6 8 10

 Omitting the increment statement

52

 package main

 import "fmt"



 func main() {

 i := 2

 for ;i <= 20; {

 fmt.Printf("%d ", i)

 i *= 2

 }

 }

 # Output

 2 4 8 16

Note that, you can also omit the semicolons from the for loop in the above
example and write it like this -

package main

import "fmt"

func main() {

 i := 2

 for i <= 20 {

 fmt.Printf("%d ", i)

 i *= 2

 }

}

53

The above for loop is similar to a while loop in other languages. Go doesn’t
have a while loop because we can easily represent a while loop using for.

Finally, You can also omit the condition from the for loop in Golang. This
will give you an infinite loop -

package main

func main() {

 // Infinite Loop

 for {

 }

}

break statement

You can use break statement to break out of a loop before its normal termination.
Here is an example -

package main

import "fmt"

func main() {

 for num := 1; num <= 100; num++ {

 if num%3 == 0 && num%5 == 0 {

 fmt.Printf("First positive number divisible by both 3 and 5 is %d\n", num)

 break

 }

 }

}

Output

54

First positive number divisible by both 3 and 5 is 15

continue statement

The continue statement is used to stop running the loop body midway and continue
to the next iteration of the loop.

package main

import "fmt"

func main() {

 for num := 1; num <= 10; num++ {

 if num%2 == 0 {

 continue;

 }

 fmt.Printf("%d ", num)

 }

}

Output

1 3 5 7 9

Session 7- Introduction to Functions in Golang

A function is a block of code that takes some input(s), does some processing on
the input(s) and produces some output(s).

55

Functions help you divide your program into small reusable pieces of code. They
improve the readability, maintainability, and testability of your program.

Declaring and Calling Functions in Golang

In Golang, we declare a function using the func keyword. A function has a name,
a list of comma-separated input parameters along with their types, the result
type(s), and a body.

Following is an example of a simple function called avg that takes two input
parameters of type float64 and returns the average of the inputs. The result is also
of type float64 -

func avg(x float64, y float64) float64 {

 return (x + y) / 2

}

Now, calling a function is very simple. You just need to pass the required number
of parameters to the function like this -

avg(6.56, 13.44)

Here is a complete example -

package main

import "fmt"

func avg(x float64, y float64) float64 {

56

 return (x + y) / 2

}

func main() {

 x := 5.75

 y := 6.25

 result := avg(x, y)

 fmt.Printf("Average of %.2f and %.2f = %.2f\n", x, y, result)

}

Output

Average of 5.75 and 6.25 = 6.00

Function parameters and return type(s) are optional

The input parameters and return type(s) are optional for a function. A function
can be declared without any input and output.

The main() function is an example of such a function -

func main() {

}

Here is another example -

func sayHello() {

 fmt.Println("Hello, World")

}

You need to specify the type only once for multiple consecutive parameters
of the same type

57

If a function has two or more consecutive parameters of the same type, then it
suffices to specify the type only once for the last parameter of that type.

For example, we can declare the avg function that we saw in the previous section
like this as well -

func avg(x, y float64) float64 { }

// Same as - func avg(x float64, y float64) float64 { }

Here is another example -

func printPersonDetails(firstName, lastName string, age int) { }

// Same as - func printPersonDetails(firstName string, lastName string, age int) { }

Functions with multiple return values

Go functions are capable of returning multiple values. That’s right! This is
something that most programming languages don’t support natively. But Go is
different.

Let’s say that you want to create a function that takes the previous price and
the current price of a stock, and returns the amount by which the price has
changed and the percentage of change.

Here is how you can implement such a function in Go -

func getStockPriceChange(prevPrice, currentPrice float64) (float64, float64) {

 change := currentPrice - prevPrice

 percentChange := (change / prevPrice) * 100

 return change, percentChange

}

Simple! isn’t it? You just need to specify the return types separated by comma
inside parentheses, and then return multiple comma-separated values from the
function.

58

Let’s see a complete example with the main() function -

package main

import (

 "fmt"

 "math"

)

func getStockPriceChange(prevPrice, currentPrice float64) (float64, float64) {

 change := currentPrice - prevPrice

 percentChange := (change / prevPrice) * 100

 return change, percentChange

}

func main() {

 prevStockPrice := 75000.0

 currentStockPrice := 100000.0

 change, percentChange := getStockPriceChange(prevStockPrice, currentStockPrice)

 if change < 0 {

 fmt.Printf("The Stock Price decreased by $%.2f which is %.2f%% of the prev
price\n", math.Abs(change), math.Abs(percentChange))

 } else {

 fmt.Printf("The Stock Price increased by $%.2f which is %.2f%% of the prev price\n",
change, percentChange)

 }

}

Output

The Stock Price increased by $25000.00 which is 33.33% of the prev price

59

Returning an error value from a function

Multiple return values are often used in Golang to return an error from the
function along with the result.

Let’s see an example - The getStockPriceChange function that we saw in the previous
section will return ±Inf (Infinity) if the prevPrice is 0. If you want to return an error
instead, you can do so by adding another return value of type error and return the
error value like so -

func getStockPriceChangeWithError(prevPrice, currentPrice float64) (float64, float64, error) {

 if prevPrice == 0 {

 err := errors.New("Previous price cannot be zero")

 return 0, 0, err

 }

 change := currentPrice - prevPrice

 percentChange := (change / prevPrice) * 100

 return change, percentChange, nil

}

The error type is a built-in type in Golang. Go programs use error values to indicate
an abnormal situation. Don’t worry if you don’t understand about errors for now.
You’ll learn more about error handling in a future session.

Following is a complete example demonstrating the above concept with
a main() function -

package main

import (

 "errors"

 "fmt"

 "math"

60

)

func getStockPriceChangeWithError(prevPrice, currentPrice float64) (float64, float64, error) {

 if prevPrice == 0 {

 err := errors.New("Previous price cannot be zero")

 return 0, 0, err

 }

 change := currentPrice - prevPrice

 percentChange := (change / prevPrice) * 100

 return change, percentChange, nil

}

func main() {

 prevStockPrice := 0.0

 currentStockPrice := 100000.0

 change, percentChange, err := getStockPriceChangeWithError(prevStockPrice,
currentStockPrice)

 if err != nil {

 fmt.Println("Sorry! There was an error: ", err)

 } else {

 if change < 0 {

 fmt.Printf("The Stock Price decreased by $%.2f which is %.2f%% of the
prev price\n", math.Abs(change), math.Abs(percentChange))

 } else {

 fmt.Printf("The Stock Price increased by $%.2f which is %.2f%% of the
prev price\n", change, percentChange)

 }

 }

61

}

Output

Sorry! There was an error: Previous price cannot be zero

Functions with named return values

The return values of a function in Golang may be named. Named return values
behave as if you defined them at the top of the function.

Let’s rewrite the getStockPriceChange function that we saw in the previous section
with named return values -

// Function with named return values

func getNamedStockPriceChange(prevPrice, currentPrice float64) (change, percentChange float64) {

 change = currentPrice - prevPrice

 percentChange = (change / prevPrice) * 100

 return change, percentChange

}

Notice how we changed := (short declarations) with = (assignments) in the
function body. This is because Go itself defines all the named return values and
makes them available for use in the function. Since they are already defined, you
can’t define them again using short declarations.

Named return values allow you to use the so-called Naked
return (a return statement without any argument). When you specify
a return statement without any argument, it returns the named return values by
default. So you can write the above function like this as well -

// Function with named return values and naked return

func getNamedStockPriceChange(prevPrice, currentPrice float64) (change, percentChange float64) {

 change = currentPrice - prevPrice

 percentChange = (change / prevPrice) * 100

62

 return

}

Let’s use the above function in a complete example with the main() function and
verify the output -

package main

import (

 "fmt"

 "math"

)

func getNamedStockPriceChange(prevPrice, currentPrice float64) (change, percentChange float64) {

 change = currentPrice - prevPrice

 percentChange = (change / prevPrice) * 100

 return

}

func main() {

 prevStockPrice := 100000.0

 currentStockPrice := 90000.0

 change, percentChange := getNamedStockPriceChange(prevStockPrice, currentStockPrice)

 if change < 0 {

 fmt.Printf("The Stock Price decreased by $%.2f which is %.2f%% of the prev
price\n", math.Abs(change), math.Abs(percentChange))

 } else {

 fmt.Printf("The Stock Price increased by $%.2f which is %.2f%% of the prev price\n",
change, percentChange)

63

 }

}

Output

The Stock Price decreased by $10000.00 which is 10.00% of the prev price

Named return values improve the readability of your functions. Using meaningful
names would let the consumers of your function know what the function will
return just by looking at its signature.

The naked return statements are good for short functions. But don’t use them if
your functions are long. They can harm the readability. You should explicitly
specify the return values in longer functions.

Blank Identifier

Sometimes you may want to ignore some of the results from a function that
returns multiple values.

For example, Let’s say that you’re using the getStockPriceChange function that we
defined in the previous section, but you’re only interested in the amount of
change, not the percentage change.

Now, you might just declare local variables and store all the values returned from
the function like this -

change, percentChange := getStockPriceChange(prevStockPrice, currentStockPrice)

But in that case, you’ll be forced to use the percentChange variable because Go
doesn’t allow creating variables that you never use.

So what’s the solution? Well, you can use a blank identifier instead -

change, _ := getStockPriceChange(prevStockPrice, currentStockPrice)

The blank identifier is used to tell Go that you don’t need this value. The following
example demonstrates this concept -

64

package main

import (

 "fmt"

 "math"

)

func getStockPriceChange(prevPrice, currentPrice float64) (float64, float64) {

 change := currentPrice - prevPrice

 percentChange := (change / prevPrice) * 100

 return change, percentChange

}

func main() {

 prevStockPrice := 80000.0

 currentStockPrice := 120000.0

 change, _ := getStockPriceChange(prevStockPrice, currentStockPrice)

 if change < 0 {

 fmt.Printf("The Stock Price decreased by $%.2f\n", math.Abs(change))

 } else {

 fmt.Printf("The Stock Price increased by $%.2f\n", change)

 }
}

Output
The Stock Price increased by $40000.00

65

Session 8- A Beginner Guide to Packages in

Golang

Go was designed to encourage good software engineering practices. One of the
guiding principles of high-quality software is the DRY principle -
 Don’t Repeat Yourself, which basically means that you should never write the
same code twice. You should reuse and build upon existing code as much as
possible.

Functions are the most basic building blocks that allow code
reuse. Packages are the next step into code reusability. They help you organize
related Go source files together into a single unit, making them modular,
reusable, and maintainable.

In this session, you’ll learn how to organize Go code into reusable packages,
how to import a package, how to export a function, type, or variable to outside
packages, and how to install 3rd party packages.

Go Package

In the most basic terms, A package is nothing but a directory inside your Go
workspace containing one or more Go source files, or other Go packages.

66

Every Go source file belongs to a package. To declare a source file to be part of
a package, we use the following syntax -

package <packagename>

The above package declaration must be the first line of code in your Go source
file. All the functions, types, and variables defined in your Go source file become
part of the declared package.

You can choose to export a member defined in your package to outside
packages, or keep them private to the same package. Other packages can
import and reuse the functions or types that are exported from your package.

Let’s see an example

Almost all the code that we have seen so far in so far include the following line -

import "fmt"

fmt is a core library package that contains functionalities related to formatting and
printing output or reading input from various I/O sources. It exports functions
like Println(), Printf(), Scanf() etc, for other packages to reuse.

67

Packaging functionalities in this way has the following benefits -

 It reduces naming conflicts. You can have the same function names in
different packages. This keeps our function names short and concise.

 It organizes related code together so that it is easier to find the code you want
to reuse.

 It speeds up the compilation process by only requiring recompilation of
smaller parts of the program that has actually changed. Although we use
the fmt package, we don’t need to recompile it every time we change our
program.

The main package and main() function

Go programs start running in the main package. It is a special package that is
used with programs that are meant to be executable.

By convention, Executable programs (the ones with the main package) are
called Commands. Others are called simply Packages.

The main() function is a special function that is the entry point of an executable
program. Let’s see an example of an executable program in Go -

// Package declaration

package main

// Importing packages

import (

 "fmt"

 "time"

 "math"

 "math/rand"

)

func main() {

 // Finding the Max of two numbers

68

 fmt.Println(math.Max(73.15, 92.46))

 // Calculate the square root of a number

 fmt.Println(math.Sqrt(225))

 // Printing the value of ` `

 fmt.Println(math.Pi)

 // Epoch time in milliseconds

 epoch := time.Now().Unix()

 fmt.Println(epoch)

 // Generating a random integer between 0 to 100

 rand.Seed(epoch)

 fmt.Println(rand.Intn(100))

}

$ go run main.go

Output

92.46

15

3.141592653589793

1538045386

40

Importing Packages

There are two ways to import packages in Go -

// Multiple import statements

69

import "fmt"

import "time"

import "math"

import "math/rand"

// Factored import statements

import (

 "fmt"

 "time"

 "math"

 "math/rand"

)

Go’s convention is that - the package name is the same as the last element of
the import path. For example, the name of the package imported
as math/rand is rand. It is imported with path math/rand because It is nested inside
the math package as a subdirectory.

Exported vs Unexported names

Anything (variable, type, or function) that starts with a capital letter is exported,
and visible outside the package.

Anything that does not start with a capital letter is not exported, and is visible only
inside the same package.

When you import a package, you can only access its exported names.

package main

import (

 "fmt"

 "math"

)

70

func main() {

 // MaxInt64 is an exported name

 fmt.Println("Max value of int64: ", int64(math.MaxInt64))

 // Phi is an exported name

 fmt.Println("Value of Phi (ϕ): ", math.Phi)

 // pi starts with a small letter, so it is not exported

 fmt.Println("Value of Pi (): ", math.pi)

}

Output

./exported_names.go:16:38: cannot refer to unexported name math.pi

./exported_names.go:16:38: undefined: math.pi

To fix the above error, you need to change math.pi to math.Pi.

Creating and managing custom Packages

Until now, we have only written code in the main package and used functionalities
imported from Go’s core library packages.

Let’s create a sample Go project that has multiple custom packages with a bunch
of source code files and see how the same concept of package declaration,
imports, and exports apply to custom packages as well.

Fire up your terminal and create a directory for our Go project:

$ mkdir packer

Next, we’ll create a Go module and make the project directory the root of the
module.

https://blog.golang.org/using-go-modules

71

Note: Go module is Go’s new dependency management system. A module is a
collection of Go packages stored in a directory with a go.mod file at its root. The
go.mod file defines the module’s path, which is also the import path used while
importing packages that are part of this module.

Before Go module got introduced in Go 1.11, every project needed to be created
inside the so-called GOPATH. The path of the project inside GOPATH was
considered its import path.

We’ll learn more about Go modules in a separate session.

Let’s initialize a Go module by typing the following commands:

$ cd packer

$ go mod init URL/packer

Let’s now create some source files and place them in different packages inside
our project. The following image displays all the packages and the source files:

Here is the code inside every source file of our project -

numbers/prime.go

https://github.com/golang/go/wiki/GOPATH

72

package numbers

import "math"

// Checks if a number is prime or not

func IsPrime(num int) bool {

 for i := 2; i <= int(math.Floor(math.Sqrt(float64(num)))); i++ {

 if num%i == 0 {

 return false

 }

 }

 return num > 1

}

strings/reverse.go

package strings

// Reverses a string

/*

 Since strings in Go are immutable, we first convert the string to a mutable array of runes
([]rune),

 perform the reverse operation on that, and then re-cast to a string.

*/

func Reverse(s string) string {

 runes := []rune(s)

 reversedRunes := reverseRunes(runes)

 return string(reversedRunes)

73

}

strings/reverse_runes.go

package strings

// Reverses an array of runes

// This function is not exported (It is only visible inside the `strings` package)

func reverseRunes(r []rune) []rune {

 for i, j := 0, len(r)-1; i < j; i, j = i+1, j-1 {

 r[i], r[j] = r[j], r[i]

 }

 return r

}

strings/greeting/texts.go (Nested package)

// Nested Package

package greeting

// Exported

const (

 WelcomeText = "Hello, World to Golang"

 MorningText = "Good Morning"

 EveningText = "Good Evening"

)

// Not exported (only visible inside the `greeting` package)

var loremIpsumText = `Lorem ipsum dolor sit amet, consectetur adipiscing elit,

74

sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad

minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

commodo consequat.`

main.go (The main package: entry point of our program)

package main

import (

 "fmt"

 str "strings" // Package Alias

 "URL/packer/numbers"

 "URL/packer/strings"

 "URL/packer/strings/greeting" // Importing a nested package

)

func main() {

 fmt.Println(numbers.IsPrime(19))

 fmt.Println(greeting.WelcomeText)

 fmt.Println(strings.Reverse("callicoder"))

 fmt.Println(str.Count("Go is Awesome. I love Go", "Go"))

}

Building the Go module

$ go build

The above command will produce an executable binary. Let’s execute the binary
file to run the program:

75

Running the executable binary

$./packer

true

Hello, World to Golang

redocillac

2

Things to note

 Import Paths

All import paths are relative to the module’s path URL/packer.

import (

 "URL/packer/numbers"

 "URL/packer/strings"

 "URL/packer/strings/greeting"

)

 Package Alias

You can use package alias to resolve conflicts between different packages of
the same name, or just to give a short name to the imported package

import (
 str "strings" // Package Alias
)

 Nested Package

You can nest a package inside another. It’s as simple as creating a
subdirectory -

76

 packer

 strings # Package

 greeting # Nested Package

 texts.go

A nested package can be imported similar to a root package. Just provide its
path relative to the module’s path URL/packer -

import (

 "URL/packer/strings/greeting"

)

Adding 3rd party Packages

Adding 3rd party packages to your project is very easy with Go modules. You
can just import the package to any of the source files in your project, and the next
time you build/run the project, Go automatically downloads it for you -

package main

import (

 "fmt"

 "rsc.io/quote"

)

func main() {

 fmt.Println(quote.Go())

}

$ go run main.go

go: finding rsc.io/quote v1.5.2

http://rsc.io/quote
http://rsc.io/quote

77

go: downloading rsc.io/quote v1.5.2

go: extracting rsc.io/quote v1.5.2

go: downloading rsc.io/sampler v1.3.0

go: extracting rsc.io/sampler v1.3.0

go: downloading golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c

go: extracting golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c

go: finding rsc.io/sampler v1.3.0

go: finding golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c

Don't communicate by sharing memory, share memory by communicating.

Go will also add this new dependency to the go.mod file.

Manually installing packages

You can use go get command to download 3rd party packages from remote
repositories.

$ go get -u github.com/jinzhu/gorm

The above command fetches the gorm package from Github and adds it as a
dependency to your go.mod file.

That’s it. You can now import and use the above package in your program like
this -

import "github.com/jinzhu/gorm"

Session 9- Working with Arrays in Golang

An array is a fixed-size collection of elements of the same type. The elements of
the array are stored sequentially and can be accessed using their index.

http://rsc.io/quote
http://rsc.io/quote
http://rsc.io/sampler
http://rsc.io/sampler
http://golang.org/x/text
http://golang.org/x/text
http://rsc.io/sampler
http://golang.org/x/text
http://github.com/jinzhu/gorm
http://github.com/jinzhu/gorm

78

Declaring an Array in Golang

You can declare an array of length n and type T like so -

var a[n]T

For example, here is how you can declare an array of 10 integers -

// An array of 10 integers

var a[10]int

Now let’s see a complete example -

package main

import "fmt"

func main() {

 var x [5]int // An array of 5 integers

 fmt.Println(x)

 var y [8]string // An array of 8 strings

 fmt.Println(y)

79

 var z [3]complex128 // An array of 3 complex numbers

 fmt.Println(z)

}

Output

[0 0 0 0 0]

[]

[(0+0i) (0+0i) (0+0i)]

By default, all the array elements are initialized with the zero value of the
corresponding array type.

For example, if we declare an integer array, all the elements will be initialized
with 0. If we declare a string array, all the elements will be initialized with an
empty string "", and so on.

Accessing array elements by their index

The elements of an array are stored sequentially and can be accessed by
their index. The index starts from zero and ends at length - 1.

package main

import "fmt"

func main() {

 var x [5]int // An array of 5 integers

 x[0] = 100

 x[1] = 101

 x[3] = 103

 x[4] = 105

80

 fmt.Printf("x[0] = %d, x[1] = %d, x[2] = %d\n", x[0], x[1], x[2])

 fmt.Println("x = ", x)

}

Output

x[0] = 100, x[1] = 101, x[2] = 0

x = [100 101 0 103 105]

In the above example, Since we didn’t assign any value to x[2], it has the
value 0 (The zero value for integers).

Initializing an array using an array literal

You can declare and initialize an array at the same time like this -

// Declaring and initializing an array at the same time

var a = [5]int{2, 4, 6, 8, 10}

The expression on the right-hand side of the above statement is called an array
literal.

Note that we do not need to specify the type of the variable a as in var a [5]int,
because the compiler can automatically infer the type from the expression on the
right hand side.

You can also use Golang’s short variable declaration for declaring and initializing
an array. The above array declaration can also be written as below inside any
function -

// Short hand declaration

a := [5]int{2, 4, 6, 8, 10}

Here is a complete example -

81

package main

import "fmt"

func main() {

 // Declaring and initializing an array at the same time

 var a = [5]int{2, 4, 6, 8, 10}

 fmt.Println(a)

 // Short declaration for declaring and initializing an array

 b := [5]int{2, 4, 6, 8, 10}

 fmt.Println(b)

 // You don't need to initialize all the elements of the array.

 // The un-initialized elements will be assigned the zero value of the corresponding array type

 c := [5]int{2}

 fmt.Println(c)

}

Output

[2 4 6 8 10]

[2 4 6 8 10]

[2 0 0 0 0]

Letting Go compiler infer the length of the array

You can also omit the size declaration from the initialization expression of the
array, and let the compiler count the number of elements for you -

package main

import "fmt"

82

func main() {

 // Letting Go compiler infer the length of the array

 a := [...]int{3, 5, 7, 9, 11, 13, 17}

 fmt.Println(a)

}

Output

[3 5 7 9 11 13 17]

Exploring more about Golang arrays

1. Array’s length is part of its type

The length of an array is part of its type. So the array a[5]int and a[10]int are
completely distinct types, and you cannot assign one to the other.

This also means that you cannot resize an array, because resizing an array
would mean changing its type, and you cannot change the type of a variable
in Golang.

package main

func main() {

 var a = [5]int{3, 5, 7, 9, 11}

 var b [10]int = a // Error, a and b are distinct types

}

2. Arrays in Golang are value types

Arrays in Golang are value types unlike other languages like C, C++, and
Java where arrays are reference types.

This means that when you assign an array to a new variable or pass an array
to a function, the entire array is copied. So if you make any changes to this
copied array, the original array won’t be affected and will remain unchanged.

83

Here is an example -

package main

import "fmt"

func main() {

 a1 := [5]string{"English", "Japanese", "Spanish", "French", "Hindi"}

 a2 := a1 // A copy of the array `a1` is assigned to `a2`

 a2[1] = "German"

 fmt.Println("a1 = ", a1) // The array `a1` remains unchanged

 fmt.Println("a2 = ", a2)

}

Output

a1 = [English Japanese Spanish French Hindi]

a2 = [English German Spanish French Hindi]

Iterating over an array in Golang

You can use the for loop to iterate over an array like so -

package main

import "fmt"

func main() {

 names := [3]string{"Mark Zuckerberg", "Bill Gates", "Larry Page"}

 for i := 0; i < len(names); i++ {

84

 fmt.Println(names[i])

 }

}

Output

Mark Zuckerberg

Bill Gates

Larry Page

The len() function in the above example is used to find the length of the array.

Let’s see another example. In the example below, we find the sum of all the
elements of the array by iterating over the array, and adding the elements one by
one to the variable sum -

package main

import "fmt"

func main() {

 a := [4]float64{3.5, 7.2, 4.8, 9.5}

 sum := float64(0)

 for i := 0; i < len(a); i++ {

 sum = sum + a[i]

 }

 fmt.Printf("Sum of all the elements in array %v = %f\n", a, sum)

}

Output

Sum of all the elements in array [3.5 7.2 4.8 9.5] = 25.000000

85

Iterating over an array using range

Golang provides a more powerful form of for loop using the range operator. Here is
how you can use the range operator with for loop to iterate over an array -

package main

import "fmt"

func main() {

 daysOfWeek := [7]string{"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"}

 for index, value := range daysOfWeek {

 fmt.Printf("Day %d of week = %s\n", index, value)

 }

}

Output

Day 0 of week = Mon

Day 1 of week = Tue

Day 2 of week = Wed

Day 3 of week = Thu

Day 4 of week = Fri

Day 5 of week = Sat

Day 6 of week = Sun

Let’s now write the same sum example that we wrote with normal for loop
using range form of the for loop -

package main

import "fmt"

86

func main() {

 a := [4]float64{3.5, 7.2, 4.8, 9.5}

 sum := float64(0)

 for index, value := range a {

 sum = sum + value

 }

 fmt.Printf("Sum of all the elements in array %v = %f", a, sum)

}

When you run the above program, it’ll generate an error like this -

Output

./array_iteration_range.go:9:13: index declared and not used

Go compiler doesn’t allow creating variables that are never used. You can fix this
by using an _ (underscore) in place of index -

package main

import "fmt"

func main() {

 a := [4]float64{3.5, 7.2, 4.8, 9.5}

 sum := float64(0)

 for _, value := range a {

 sum = sum + value

 }

87

 fmt.Printf("Sum of all the elements in array %v = %f", a, sum)

}

The underscore (_) is used to tell the compiler that we don’t need this variable.
The above program now runs successfully and outputs the sum of the array -

Output

Sum of all the elements in array [3.5 7.2 4.8 9.5] = 25.000000

Multidimensional arrays in Golang

All the arrays that we created so far in this post are one dimensional. You can
also create multi-dimensional arrays in Golang.

The following example demonstrates how to create multidimensional arrays -

package main

import "fmt"

func main() {

 a := [2][2]int{

 {3, 5},

 {7, 9}, // This trailing comma is mandatory

 }

 fmt.Println(a)

 // Just like 1D arrays, you don't need to initialize all the elements in a multi-dimensional array.

 // Un-initialized array elements will be assigned the zero value of the array type.

 b := [3][4]float64{

88

 {1, 3},

 {4.5, -3, 7.4, 2},

 {6, 2, 11},

 }

 fmt.Println(b)

}

Output

[[3 5] [7 9]]

[[1 3 0 0] [4.5 -3 7.4 2] [6 2 11 0]]

Session 10- Introduction to Slices in Golang

A Slice is a segment of an array. Slices build on arrays and provide more power,
flexibility, and convenience compared to arrays.

Just like arrays, Slices are indexable and have a length. But unlike arrays, they
can be resized.

Internally, A Slice is just a reference to an underlying array. In this session, we’ll
learn how to create and use slices, and also understand how they work under the
hood.

Declaring a Slice

A slice of type T is declared using []T. For example, here is how you can declare a
slice of type int -

// Slice of type `int`

var s []int

89

The slice is declared just like an array except that we do not specify any size in
the brackets [].

Creating and Initializing a Slice

1. Creating a slice using a slice literal

You can create a slice using a slice literal like this -

// Creating a slice using a slice literal

var s = []int{3, 5, 7, 9, 11, 13, 17}

The expression on the right-hand side of the above statement is a slice literal.
The slice literal is declared just like an array literal, except that you do not specify
any size in the square brackets [].

When you create a slice using a slice literal, it first creates an array and then
returns a slice reference to it.

Let’s see a complete example -

package main

import "fmt"

func main() {

 // Creating a slice using a slice literal

 var s = []int{3, 5, 7, 9, 11, 13, 17}

 // Short hand declaration

 t := []int{2, 4, 8, 16, 32, 64}

 fmt.Println("s = ", s)

 fmt.Println("t = ", t)

}

90

Output

s = [3 5 7 9 11 13 17]

t = [2 4 8 16 32 64]

2. Creating a slice from an array

Since a slice is a segment of an array, we can create a slice from an array.

To create a slice from an array a, we specify two indices low (lower bound)
and high (upper bound) separated by a colon -

// Obtaining a slice from an array `a`

a[low:high]

The above expression selects a slice from the array a. The resulting slice
includes all the elements starting from index low to high, but excluding the element
at index high.

Let’s see an example to make things more clear -

package main

import "fmt"

func main() {

 var a = [5]string{"Alpha", "Beta", "Gamma", "Delta", "Epsilon"}

 // Creating a slice from the array

 var s []string = a[1:4]

 fmt.Println("Array a = ", a)

 fmt.Println("Slice s = ", s)

}

91

Array a = [Alpha Beta Gamma Delta Epsilon]

Slice s = [Beta Gamma Delta]

The low and high indices in the slice expression are optional. The default value
for low is 0, and high is the length of the slice.

package main

import "fmt"

func main() {

 a := [5]string{"C", "C++", "Java", "Python", "Go"}

 slice1 := a[1:4]

 slice2 := a[:3]

 slice3 := a[2:]

 slice4 := a[:]

 fmt.Println("Array a = ", a)

 fmt.Println("slice1 = ", slice1)

 fmt.Println("slice2 = ", slice2)

 fmt.Println("slice3 = ", slice3)

 fmt.Println("slice4 = ", slice4)

}

Output

Array a = [C C++ Java Python Go]

slice1 = [C++ Java Python]

slice2 = [C C++ Java]

slice3 = [Java Python Go]

92

slice4 = [C C++ Java Python Go]

3. Creating a slice from another slice

A slice can also be created by slicing an existing slice.

package main

import "fmt"

func main() {

 cities := []string{"New York", "London", "Chicago", "Beijing", "Delhi", "Mumbai", "Bangalore",
"Hyderabad", "Hong Kong"}

 asianCities := cities[3:]

 indianCities := asianCities[1:5]

 fmt.Println("cities = ", cities)

 fmt.Println("asianCities = ", asianCities)

 fmt.Println("indianCities = ", indianCities)

}

Output

cities = [New York London Chicago Beijing Delhi Mumbai Bangalore Hyderabad Hong Kong]

asianCities = [Beijing Delhi Mumbai Bangalore Hyderabad Hong Kong]

indianCities = [Delhi Mumbai Bangalore Hyderabad]

Modifying a slice

Slices are reference types. They refer to an underlying array. Modifying the
elements of a slice will modify the corresponding elements in the referenced
array. Other slices that refer the same array will also see those modifications.

93

package main

import "fmt"

func main() {

 a := [7]string{"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"}

 slice1 := a[1:]

 slice2 := a[3:]

 fmt.Println("------- Before Modifications -------")

 fmt.Println("a = ", a)

 fmt.Println("slice1 = ", slice1)

 fmt.Println("slice2 = ", slice2)

 slice1[0] = "TUE"

 slice1[1] = "WED"

 slice1[2] = "THU"

 slice2[1] = "FRIDAY"

 fmt.Println("\n-------- After Modifications --------")

 fmt.Println("a = ", a)

 fmt.Println("slice1 = ", slice1)

 fmt.Println("slice2 = ", slice2)

}

Output

------- Before Modifications -------

a = [Mon Tue Wed Thu Fri Sat Sun]

slice1 = [Tue Wed Thu Fri Sat Sun]

94

slice2 = [Thu Fri Sat Sun]

-------- After Modifications --------

a = [Mon TUE WED THU FRIDAY Sat Sun]

slice1 = [TUE WED THU FRIDAY Sat Sun]

slice2 = [THU FRIDAY Sat Sun]

Length and Capacity of a Slice

A slice consists of three things -

 A pointer (reference) to an underlying array.
 The length of the segment of the array that the slice contains.
 The capacity (the maximum size up to which the segment can grow).

Let’s consider the following array and the slice obtained from it as an example -

var a = [6]int{10, 20, 30, 40, 50, 60}

var s = [1:4]

Here is how the slice s in the above example is represented -

95

The length of the slice is the number of elements in the slice, which is 3 in the
above example.

The capacity is the number of elements in the underlying array starting from the
first element in the slice. It is 5 in the above example.

You can find the length and capacity of a slice using the built-in
functions len() and cap() -

package main

import "fmt"

func main() {

 a := [6]int{10, 20, 30, 40, 50, 60}

 s := a[1:4]

 fmt.Printf("s = %v, len = %d, cap = %d\n", s, len(s), cap(s))

}

Output

s = [20 30 40], len = 3, cap = 5

96

A slice’s length can be extended up to its capacity by re-slicing it. Any attempt to
extend its length beyond the available capacity will result in a runtime error.

Check out the following example to understand how re-slicing a given slice
changes its length and capacity -

package main

import "fmt"

func main() {

 s := []int{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

 fmt.Println("Original Slice")

 fmt.Printf("s = %v, len = %d, cap = %d\n", s, len(s), cap(s))

 s = s[1:5]

 fmt.Println("\nAfter slicing from index 1 to 5")

 fmt.Printf("s = %v, len = %d, cap = %d\n", s, len(s), cap(s))

 s = s[:8]

 fmt.Println("\nAfter extending the length")

 fmt.Printf("s = %v, len = %d, cap = %d\n", s, len(s), cap(s))

 s = s[2:]

 fmt.Println("\nAfter dropping the first two elements")

 fmt.Printf("s = %v, len = %d, cap = %d\n", s, len(s), cap(s))

}

Output

Original Slice

s = [10 20 30 40 50 60 70 80 90 100], len = 10, cap = 10

After slicing from index 1 to 5

97

s = [20 30 40 50], len = 4, cap = 9

After extending the length

s = [20 30 40 50 60 70 80 90], len = 8, cap = 9

After dropping the first two elements

s = [40 50 60 70 80 90], len = 6, cap = 7

Creating a slice using the built-in make() function

Now that we know about the length and capacity of a slice. Let’s look at another
way to create a slice.

Golang provides a library function called make() for creating slices. Following is the
signature of make() function -

func make([]T, len, cap) []T

The make function takes a type, a length, and an optional capacity. It allocates
an underlying array with size equal to the given capacity, and returns a slice that
refers to that array.

package main

import "fmt"

func main() {

 // Creates an array of size 10, slices it till index 5, and returns the slice reference

 s := make([]int, 5, 10)

 fmt.Printf("s = %v, len = %d, cap = %d\n", s, len(s), cap(s))

}

Output

98

s = [0 0 0 0 0], len = 5, cap = 10

The capacity parameter in the make() function is optional. When omitted, it
defaults to the specified length -

package main

import "fmt"

func main() {

 // Creates an array of size 5, and returns a slice reference to it

 s := make([]int, 5)

 fmt.Printf("s = %v, len = %d, cap = %d\n", s, len(s), cap(s))

}

Output

s = [0 0 0 0 0], len = 5, cap = 5

Zero value of slices

The zero value of a slice is nil. A nil slice doesn’t have any underlying array, and
has a length and capacity of 0 -

package main

import "fmt"

func main() {

 var s []int

 fmt.Printf("s = %v, len = %d, cap = %d\n", s, len(s), cap(s))

 if s == nil {

99

 fmt.Println("s is nil")

 }

}

Output

s = [], len = 0, cap = 0

s is nil

Slice Functions

1. The copy() function: copying a slice

The copy() function copies elements from one slice to another. Its signature looks
like this -

func copy(dst, src []T) int

It takes two slices - a destination slice, and a source slice. It then copies
elements from the source to the destination and returns the number of elements
that are copied.

The number of elements copied will be the minimum of len(src) and len(dst).

package main

import "fmt"

func main() {

 src := []string{"Sublime", "VSCode", "IntelliJ", "Eclipse"}

 dest := make([]string, 2)

 numElementsCopied := copy(dest, src)

100

 fmt.Println("src = ", src)

 fmt.Println("dest = ", dest)

 fmt.Println("Number of elements copied from src to dest = ", numElementsCopied)

}

Output

src = [Sublime VSCode IntelliJ Eclipse]

dest = [Sublime VSCode]

Number of elements copied from src to dest = 2

2. The append() function: appending to a slice

The append() function appends new elements at the end of a given slice. Following
is the signature of append function.

func append(s []T, x ...T) []T

It takes a slice and a variable number of arguments x …T. It then returns a new
slice containing all the elements from the given slice as well as the new
elements.

If the given slice doesn’t have sufficient capacity to accommodate new elements
then a new underlying array is allocated with bigger capacity. All the elements
from the underlying array of the existing slice are copied to this new array, and
then the new elements are appended.

However, if the slice has enough capacity to accommodate new elements, then
the append() function re-uses its underlying array and appends new elements to
the same array.

Let’s see an example to understand things better -

package main

import "fmt"

101

func main() {

 slice1 := []string{"C", "C++", "Java"}

 slice2 := append(slice1, "Python", "Ruby", "Go")

 fmt.Printf("slice1 = %v, len = %d, cap = %d\n", slice1, len(slice1), cap(slice1))

 fmt.Printf("slice2 = %v, len = %d, cap = %d\n", slice2, len(slice2), cap(slice2))

 slice1[0] = "C#"

 fmt.Println("\nslice1 = ", slice1)

 fmt.Println("slice2 = ", slice2)

}

Output

slice1 = [C C++ Java], len = 3, cap = 3

slice2 = [C C++ Java Python Ruby Go], len = 6, cap = 6

slice1 = [C# C++ Java]

slice2 = [C C++ Java Python Ruby Go]

In the above example, since slice1 has capacity 3, it can’t accommodate more
elements. So a new underlying array is allocated with bigger capacity when we
append more elements to it.

So if you modify slice1, slice2 won’t see those changes because it refers to a
different array.

But what if slice1 had enough capacity to accommodate new elements? Well,
in that case, no new array would be allocated, and the elements would be added
to the same underlying array.

Also, in that case, changes to slice1 would affect slice2 as well because both would
refer to the same underlying array. This is demonstrated in the following example
-

package main

102

import "fmt"

func main() {

 slice1 := make([]string, 3, 10)

 copy(slice1, []string{"C", "C++", "Java"})

 slice2 := append(slice1, "Python", "Ruby", "Go")

 fmt.Printf("slice1 = %v, len = %d, cap = %d\n", slice1, len(slice1), cap(slice1))

 fmt.Printf("slice2 = %v, len = %d, cap = %d\n", slice2, len(slice2), cap(slice2))

 slice1[0] = "C#"

 fmt.Println("\nslice1 = ", slice1)

 fmt.Println("slice2 = ", slice2)

}

Output

slice1 = [C C++ Java], len = 3, cap = 10

slice2 = [C C++ Java Python Ruby Go], len = 6, cap = 10

slice1 = [C# C++ Java]

slice2 = [C# C++ Java Python Ruby Go]

Appending to a nil slice

When you append values to a nil slice, it allocates a new slice and returns the
reference of the new slice.

package main

import "fmt"

103

func main() {

 var s []string

 // Appending to a nil slice

 s = append(s, "Cat", "Dog", "Lion", "Tiger")

 fmt.Printf("s = %v, len = %d, cap = %d\n", s, len(s), cap(s))

}

Output

s = [Cat Dog Lion Tiger], len = 4, cap = 4

Appending one slice to another

You can directly append one slice to another using the ... operator. This operator
expands the slice to a list of arguments. The following example demonstrates its
usage -

package main

import "fmt"

func main() {

 slice1 := []string{"Jack", "John", "Peter"}

 slice2 := []string{"Bill", "Mark", "Steve"}

 slice3 := append(slice1, slice2...)

 fmt.Println("slice1 = ", slice1)

 fmt.Println("slice2 = ", slice2)

 fmt.Println("After appending slice1 & slice2 = ", slice3)

}

104

Output

slice1 = [Jack John Peter]

slice2 = [Bill Mark Steve]

After appending slice1 & slice2 = [Jack John Peter Bill Mark Steve]

Slice of slices

Slices can be of any type. They can also contain other slices. The example below
creates a slice of slices -

package main

import "fmt"

func main() {

 s := [][]string{

 {"India", "China"},

 {"USA", "Canada"},

 {"Switzerland", "Germany"},

 }

 fmt.Println("Slice s = ", s)

 fmt.Println("length = ", len(s))

 fmt.Println("capacity = ", cap(s))

}

Output

Slice s = [[India China] [USA Canada] [Switzerland Germany]]

length = 3

105

capacity = 3

Iterating over a slice

You can iterate over a slice in the same way you iterate over an array. Following
are two ways of iterating over a slice:

1. Iterating over a slice using for loop

package main

import "fmt"

func main() {

 countries := []string{"India", "America", "Russia", "England"}

 for i := 0; i < len(countries); i++ {

 fmt.Println(countries[i])

 }

}

Output

India

America

Russia

England

2. Iterating over a slice using the range form of for loop

package main

106

import "fmt"

func main() {

 primeNumbers := []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

 for index, number := range primeNumbers {

 fmt.Printf("PrimeNumber(%d) = %d\n", index+1, number)

 }

}

Output

PrimeNumber(1) = 2

PrimeNumber(2) = 3

PrimeNumber(3) = 5

PrimeNumber(4) = 7

PrimeNumber(5) = 11

PrimeNumber(6) = 13

PrimeNumber(7) = 17

PrimeNumber(8) = 19

PrimeNumber(9) = 23

PrimeNumber(10) = 29

Ignoring the index from the range form of for loop using Blank identifier

The range form of for loop gives you the index and the value at that index in each
iteration. If you don’t want to use the index, then you can discard it by using an
underscore _.

The underscore (_) is called the blank identifier. It is used to tell Go compiler that
we don’t need this value.

package main

107

import "fmt"

func main() {

 numbers := []float64{3.5, 7.4, 9.2, 5.4}

 sum := 0.0

 for _, number := range numbers {

 sum += number

 }

 fmt.Printf("Total Sum = %.2f\n", sum)

}

Output

Total Sum = 25.50

