
1

Bash Scripting examples- Beginner Level

By Coding-Bootcamps.com

Outline
1- Using While Loop

2- Using For Loop

3- Get User Input

4- Using if statement

5- Using if statement with AND logic

6- Using if statement with OR logic

7- Using else if statement

8- Using Case Statement

9- Create Function

10- Create function with Parameters

11- Pass Return Value from Function

12- Get Parse Current Date

1- Using While Loop

Create a bash file with the name, ‘while_example.sh’, to know the use of while
loop. In the example, while loop will iterate for 5 times. The value of count variable
will increment by 1 in each step. When the value of count variable is 5 then the
while loop will terminate.

#!/bin/bash
valid=true
count=1
while [$valid]
do
 echo $count
if [$count -eq 5]; then
 break
fi
((count++))
done

Run the file with bash command.

$ bash while_example.sh

2- Using For Loop

2

The basic for loop declaration is shown in the following example. Create a file
named ‘for_example.sh’ and add the following script using for loop. Here, for loop
will iterate for 10 times and print all values of the variable, counter in single line.

#!/bin/bash
for ((counter=10; counter>0; counter--))
do
 echo -n "$counter "
done
printf "\n"

Run the file with bash command.

$ bash for_example.sh

Other forms of for loops:

for i in 1 2 3 4 5

do

 echo "Welcome $i times"

done

for i in $(seq 1 2 20)

do

 echo "Welcome $i times"

done

3- Get User Input
‘read’ command is used to take input from user in bash. Create a file named
‘user_input.sh’ and add the following script for taking input from the user. Here, one
string value will be taken from the user and display the value by combining other
string value.

#!/bin/bash
echo "Enter Your Name"
read name
echo "Welcome $name to Intro to Bash Scripting"

Run the file with bash command.

$ bash user_input.sh

3

4- Using if statement

You can use if condition with single or multiple conditions. Starting and ending block
of this statement is define by ‘if’ and ‘fi’. Create a file named ‘simple_if.sh’ with the
following script to know the use if statement in bash. Here, 10 is assigned to the
variable, n. if the value of $n is less than 10 then the output will be “It is a one digit
number”, otherwise the output will be “It is a two digit number”. For comparison, ‘-
lt’ is used here. For comparison, you can also use ‘-eq’ for equality, ‘-ne’ for not
equality and ‘-gt’ for greater than in bash script.

#!/bin/bash
n=10
if [$n -lt 10]; then
 echo "It is a one digit number"
else
 echo "It is a two digit number"
fi

Run the file with bash command.

$ bash simple_if.sh

5- Using if statement with AND logic

Different types of logical conditions can be used in if statement with two or more
conditions. How you can define multiple conditions in if statement using AND logic is
shown in the following example. ‘&&’ is used to apply AND logic of if statement.
Create a file named ‘if_with_AND.sh’ to check the following code. Here, the value
of username and password variables will be taken from the user and compared
with ‘admin’ and ‘secret’. If both values match then the output will be “valid user”,
otherwise the output will be “invalid user”.

!/bin/bash

echo "Enter username"
read username
echo "Enter password"
read password

if [[($username == "admin") && ($password == "secret")]];then
 echo "valid user"
else
 echo "invalid user"
fi

4

Run the file with bash command.

$ bash if_with_AND.sh

6- Using if statement with OR logic

‘||’ is used to define OR logic in if condition. Create a file named ‘if_with_OR.sh’
with the following code to check the use of OR logic of if statement. Here, the value
of n will be taken from the user. If the value is equal to 15 or 45 then the output will
be “You won the game”, otherwise the output will be “You lost the game”.

#!/bin/bash

echo "Enter any number"
read n

if [[($n -eq 15) || ($n -eq 45)]]; then
 echo "You won the game"
else
 echo "You lost the game"
fi

Run the file with bash command.

$ bash if_with_OR.sh

7- Using else if statement

The use of else if condition is little different in bash than other programming
language. ‘elif’ is used to define else if condition in bash. Create a file named,
‘elseif_example.sh’ and add the following script to check how else if is defined in
bash script.

#!/bin/bash

echo "Enter your lucky number"
read n

if [$n -eq 101]; then
 echo "You got 1st prize"

5

Run the file with bash command.

$ bash elseif_example.sh

8- Using Case Statement
Case statement is used as the alternative of if-elseif-else statement. The starting
and ending block of this statement is defined by ‘case’ and ‘esac’. Create a new file
named, ‘case_example.sh’ and add the following script. The output of the following
script will be same to the previous else if example.

#!/bin/bash

echo "Enter your lucky number"
read n
case $n in
101)
 echo "You got 1st prize" ;;
510)
 echo "You got 2nd prize" ;;
999)
 echo "You got 3rd prize" ;;
*)
 echo "Sorry, try for the next time" ;;
esac

Run the file with bash command.

$ bash case_example.sh

elif [$n -eq 510]; then
 echo "You got 2nd prize"
elif [$n -eq 999]; then
 echo "You got 3rd prize"

else
 echo "Sorry, try for the next time"
fi

6

9- Create Function

How you can create a simple function and call the function is shown in the following
script. Create a file named ‘function_example.sh’ and add the following code. You
can call any function by name only without using any bracket in bash script.

#!/bin/bash
function F1() {
 echo 'I like bash programming'
}

F1

Run the file with bash command.

$ bash function_example.sh

10- Create function with Parameters

Bash can’t declare function parameter or arguments at the time of function
declaration. But you can use parameters in function by using other variable. If two
values are passed at the time of function calling then $1 and $2 variable are used for
reading the values. Create a file named ‘function_parameter.sh’ and add the
following code. Here, the function, ‘Rectangle_Area’ will calculate the area of a
rectangle based on the parameter values.

#!/bin/bash

Rectangle_Area() {
 area=$(($1 * $2))
 echo "Area is : $area"
}

Rectangle_Area 10 20

Run the file with bash command.

$ bash function_parameter.sh

7

11- Pass Return Value from Function

Bash function can pass both numeric and string values. How you can pass a string
value from the function is shown in the following example. Create a file named,
‘function_return.sh’ and add the following code. The function, greeting() returns a
string value into the variable, val which prints later by combining with other string.

#!/bin/bash
function greeting() {
 str="Hello, $name"
 echo $str
}

echo "Enter your name"
read name

val=$(greeting)
echo "Return value of the function is $val"

Run the file with bash command.

$ bash function_return.sh

12- Get Parse Current Date

You can get the current system date and time value using `date` command. Every
part of date and time value can be parsed using ‘Y’, ‘m’, ‘d’, ‘H’, ‘M’ and ‘S’. Create
a new file named ‘date_parse.sh’ and add the following code to separate day,
month, year, hour, minute and second values.

#!/bin/bash
Year=`date +%Y`
Month=`date +%m`
Day=`date +%d`
Hour=`date +%H`
Minute=`date +%M`
Second=`date +%S`
echo `date`
echo "Current Date is: $Day-$Month-$Year"
echo "Current Time is: $Hour:$Minute:$Second"

Run the file with bash command.

8

$ bash date_parse.sh

