
By Jim Sullivan  
from Coding Bootcamps 

Coding-bootcamps.com 

Introduction to Java 
Programming Language 

https://coding-bootcamps.com/
https://coding-bootcamps.com/


Deeper Into Classes and 
Objects 
Session 7 



Brief Recap 
● Re-hash what we’ve covered in 

our last class 



Objective - Discuss The Following 

● Controlling Access to Class Members 

● Referencing the Current Object Using this 

● Overloading Constructors 

● Default and No-Argument Constructors 

● Composition of Classes 

● Garbage Collection and Destructors 

● The finalize Method 

● Static Class Members 
 



Materials 
● These Powerpoint Slides 

 



OOP - Encapsulation 

● Encapsulation is used for controlling access to class members 

● Get’s and Set’s are the actual access points of the instance of 

this class.  Therefore, any class that wants to get this data needs 

to use the ‘getter’ 

● Likewise, if an attribute was private and no ‘getter’ was present, 

this data would be hidden  

 



OOP - 
Encapsulation 

● Example 

public class EncapTest { 
  private String name; 
  private String idNum; 
  private int age; 
 
  public int getAge() { 
  return age; 
  } 
 
  public String getName() { 
  return name; 
  } 
 
  public String getIdNum() { 
  return idNum; 
  } 
 
  public void setAge( int newAge) { 
  age = newAge; 
  } 
 
  public void setName(String newName) { 
  name = newName; 
  } 
 
  public void setIdNum( String newId) { 
  idNum = newId; 
  } 
} 

 

 

 



OOP - Encapsulation - Example 

/* File name : RunEncap.java */ 
public class RunEncap { 
 
  public static void main(String args[]) { 
  EncapTest encap = new EncapTest(); 
  encap.setName("James"); 
  encap.setAge(20); 
  encap.setIdNum("12343ms"); 
 
  System.out.print("Name : " + encap.getName() + " Age : " + 
encap.getAge()); 
  } 
} 

 

 

 



The ‘this’ keyword 

● Within an instance method or a constructor, this is a reference to 

the current object  

○ The object whose method or constructor is being called. 

○ You can refer to any member of the current object from 

within an instance method or a constructor by using this. 

● The most common reason for using the this keyword is because 

a field is shadowed by a method or constructor parameter. 

 

 

 



The ‘this’ keyword 

public class Point { 

    public int x = 0; 

    public int y = 0; 

         

    //constructor 

    public Point(int x, int y) { 

        this.x = x; 

        this.y = y; 

    } 

} 



Using ‘this’ with a Constructor 

● From within a constructor, you can also use the this keyword to call 

another constructor in the same class.  

○ Doing so is called an explicit constructor invocation.  

○ Here's another Rectangle class, with a different implementation 

from the one in the Objects section. 

 

 

 

 

 

 



Using ‘this’ with a Constructor 

public class Rectangle { 

    private int x, y; 

    private int width, height; 

         

    public Rectangle() { 

        this(0, 0, 1, 1); 

    } 

    public Rectangle(int width, int height) { 

        this(0, 0, width, height); 

    } 

    public Rectangle(int x, int y, int width, int height) { 

        this.x = x; 

        this.y = y; 

        this.width = width; 

        this.height = height; 

    } 

    ... 

} 



Overloading Constructors 

● It's common to overload constructors -  

○ Define multiple constructors which differ in number and/or 

types of parameters.  

 

 

 



Overloading Constructors 

public class Perimeter 
{ 
  public Perimeter(int 
x)                                                // II 
  { 
    System.out.println("Circle perimeter: " + 2*Math.PI*x); 
  } 
  public Perimeter(int x, int 
y)                                     // III 
  { 
    System.out.println("Rectangle perimeter: " +2*(x+y)); 
  } 
  public static void main(String args[]) 
  { 
    Perimeter p1 = new Perimeter(10);                   
    Perimeter p2 = new Perimeter(10, 20);         // III 
  } 
} 

 

 

 

 



● A constructor without parameters is called as "default 

constructor" or "no-args constructor".  

● It is called default because if the programmer does not write 

one, the compiler will create and supply one. 

● The default constructor supplied does not have any functionality 

(output). 

 

 

 

 

Default And No Argument 



Overloading Constructors 

public class Demo 

{ 

  public Demo() 

  { 

    System.out.println("From default 

constructor"); 

  } 

  public static void main(String 

args[]) 

  { 

    Demo d1 = new Demo(); 

    Demo d2 = new Demo(); 

  } 

} 



● Composition is the design technique to implement has-a 

relationship in classes.  

● We can use java inheritance or Object composition for code 

reuse.  

● Composition in java is achieved by using instance variables that 

refers to other objects. For example, a Person has a Job. 

 

 

 

Composition of Classes 



Composition  

● Example 1 

public class Employee { 
  private String name; 
  private String address; 
  private int number; 
 
  public Employee(String name, String address, int number) { 
  System.out.println("Constructing an Employee"); 
  this.name = name; 
  this.address = address; 
  this.number = number; 
  } 
 
  public void mailCheck() { 
  System.out.println("Mailing a check to " + this.name + " " + 
this.address); 
  } 
 
  public String toString() { 
  return name + " " + address + " " + number; 
  } 
 
  public String getName() { 
  return name; 
  } 
 
  public String getAddress() { 
  return address; 
  } 
 
  public void setAddress(String newAddress) { 
  address = newAddress; 
  } 
 
  public int getNumber() { 
  return number; 
  } 
} 



Composition  

● Example 2 

public class Salary extends Employee { 
  private double salary; // Annual salary 
   
  public Salary(String name, String address, int number, double 
salary) { 
  super(name, address, number); 
  setSalary(salary); 
  } 
   
  public void mailCheck() { 
  System.out.println("Within mailCheck of Salary class "); 
  System.out.println("Mailing check to " + getName() 
  + " with salary " + salary); 
  } 
   
  public double getSalary() { 
  return salary; 
  } 
   
  public void setSalary(double newSalary) { 
  if(newSalary >= 0.0) { 
    salary = newSalary; 
  } 
  } 
   
  public double computePay() { 
  System.out.println("Computing salary pay for " + getName()); 
  return salary/52; 
  } 
} 

 

 

 



● You all know that an object is created in the memory using new 

operator.  

● The constructor is used to initialize the properties of that object. 

● When an object is no more required, it must be removed from the 

memory so that that memory can be reused for other objects. 

●  Removing unwanted objects or abandoned objects from the 

memory is called garbage collection (GC) 

Memory Management 



● Java Memory Management, with its built-in garbage collection, is 

one of the language’s finest achievements.  

● It allows developers to create new objects without worrying 

explicitly about memory allocation and deallocation, because the 

garbage collector automatically reclaims memory for reuse. 

 

 

 

 

Garbage Collection and Destructors 



● The java.lang.Object.finalize() is called by the garbage collector 

on an object when garbage collection determines that there are 

no more references to the object.  

● A subclass overrides the finalize method to dispose of system 

resources or to perform other cleanup. 

The finalize Method 



● When a number of objects are created from the same class 

blueprint, they each have their own distinct copies of instance 

variables.  

● In an example, consider a Bicycle class. 

○ The instance variables could be things like cadence, gear, 

and speed.  

○ Each Bicycle object has its own values for these variables, 

stored in different memory locations. 

 
 

Static Class Members 



● Sometimes, you want to have variables that are common to all objects.  

○ This is accomplished with the static modifier.  

● Fields that have the static modifier in their declaration are called static fields or 

class variables.  

○ They are associated with the class, rather than with any object.  

○ Every instance of the class shares a class variable, which is in one fixed 

location in memory.  

○ Any object can change the value of a class variable, but class variables can 

also be manipulated without creating an instance of the class. 

 

 

 
 

Static Class Members 



Static Class Members 

public class Bicycle { 

         

    private int cadence; 

    private int gear; 

    private int speed; 

         

    // add an instance variable for the object ID 

    private int id; 

     

    // add a class variable for the 

    // number of Bicycle objects instantiated 

    private static int numberOfBicycles = 0; 

        ... 

} 

 

 



● Class variables are referenced by the class name itself, as in 

 

Bicycle.numberOfBicycles 

 

 

 
 

Static Class Members 



● Write a simple Vehicle class that has fields for (at least) current speed, current direction in 

degrees, and owner name. 

○ Add a static field to your Vehicle class for the highest Vehicle Identification Number 

issued, and a non-static field that holds each vehicle's ID number. 

○ Write a main method for your Vehicle class that creates a few vehicles and prints out their 

field values. Note that you can also write a separate tester program as well. 

○ Add two constructors to Vehicle. A no-arg constructor and one that takes an initial owner's 

name. Modify the tester program from the previous step and test your design. 

○ Make the fields in your Vehicle class private, and add accessor methods for the fields. 

Which fields should have methods to change them and which should not? 

○ Add a static method to Vehicle that returns the highest identification number used so far. 

 

 

 

Homework 



Summary ● What we learned in this session 



Live private coaching sessions for Java 

 

● Private tutoring sessions for software design and engineering- Weekly and 

monthly plans 

 

● Java programming language- Private tutoring sessions 

 

https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language


Coding-bootcamps.com 

Thank You 


