
By Jim Sullivan
from Coding Bootcamps

Coding-bootcamps.com

Introduction to Java
Programming Language

https://coding-bootcamps.com/
https://coding-bootcamps.com/

Introduction to Classes and
Objects
Session 3

Brief Recap
● Re-hash what we’ve covered in

our first class

Objective - Discuss The Following

● Classes, Objects and Methods

● Object Instances

● Declaring and Instantiating a Java Object

● Declaring Methods

● set and get Methods

● Initiating Objects with Constructors

● Primitive Types vs. Reference Types

Materials
● These Powerpoint Slides

Object Oriented Programming

● What is an object?

○ A Unique entity that has methods, attributes and can react to

events

● What is a method?

○ Things an object can do; the VERB of the object. An action, like

show; add; subtract; print.

Object Oriented Programming

● What is an attribute?

○ Things that describe an object; the ‘adjective’ of an object. In an

object this is something like: color; size; enabled

● What is an event?

○ Forces external events to an object to which the object can react.

Object Oriented Programming

● What is a class?

○ Provides a way to create new object based on a definition. For

example, The person class or the car class.

● What is a constructor?

○ Special methods used to create new instances of a class. For

instance, a Honda Civic is an instance of the car class.

Classes, Objects and Methods

● What is the class ?

● What are the attributes/objects

● What are the methods

public class Dog {
 String breed;
 int age;
 String color;

 void barking() {
 }

 void hungry() {
 }

 void sleeping() {
 }
}

Object Instances

● An object and an instance are the same thing.

● An "instance" refers to a specific object of a specific type

○ For example "an instance of type Foo".

○ But when talking about objects in general I would say "objects"

rather than "instances".

public Dog fido = new Dog();

OOP - Classes and Objects: Recap

● What is a class?

○ A data type that allows programmers to create objects

○ Provides a definition for an object, describing an object’s attributes (data) and

methods (operations)

● What is an object?

○ An object is an instance of the class

○ You can have as many instances as you want

OOP - Declaring Methods

public double calculateAnswer(double wingSpan, int numberOfEngines,

 double length, double grossTons) {

 //do the calculation here

}

OOP - Declaring Methods

● The only required elements of a method declaration are

○ The return type

○ The name

○ A pair of parentheses ()

○ A body between braces, {}.

OOP - Declaring Methods

● More generally, method declarations have six components, in order:

○ Modifiers— such as public, private, and others you will learn about later.

○ The return type—the data type of the value returned by the method, or void if

the method does not return a value.

○ The method name

○ The parameter list in parenthesis

■ If there are no parameters, you must use empty parentheses.

○ An exception list—to be discussed later.

○ The code that goes between the { } ‘s

OOP - Encapsulation

● Encapsulation is one of the four fundamental OOP

concepts. The other three are inheritance,

polymorphism, and abstraction.

● Encapsulation in Java is a mechanism of wrapping

the data (variables) and code acting on the data

(methods) together as a single unit.

● In encapsulation, the variables of a class will be

hidden from other classes, and can be accessed

only through the methods of their current class.

Therefore, it is also known as data hiding.

OOP - Encapsulation

● Get’s and Set’s are the actual access

points of the instance of this class.

Therefore, any class that wants to get

this data needs to use the ‘getter’

● Likewise, if an attribute was private and

no ‘getter’ was present, this data would

be hidden

OOP -
Encapsulation

● Example

public class EncapTest {
 private String name;
 private String idNum;
 private int age;

 public int getAge() {
 return age;
 }

 public String getName() {
 return name;
 }

 public String getIdNum() {
 return idNum;
 }

 public void setAge(int newAge) {
 age = newAge;
 }

 public void setName(String newName) {
 name = newName;
 }

 public void setIdNum(String newId) {
 idNum = newId;
 }
}

OOP - Encapsulation - Example

/* File name : RunEncap.java */
public class RunEncap {

 public static void main(String args[]) {
 EncapTest encap = new EncapTest();
 encap.setName("James");
 encap.setAge(20);
 encap.setIdNum("12343ms");

 System.out.print("Name : " + encap.getName() + " Age : " +
encap.getAge());
 }
}

OOP - Initiating Objects with Constructors

● As you know, a class provides the blueprint for objects; you create an object from a class.

● Each of the following statements taken from the CreateObjectDemo program creates an object and

assigns it to a variable:
Point originOne = new Point(23, 94);

Rectangle rectOne = new Rectangle(originOne, 100, 200);

Rectangle rectTwo = new Rectangle(50, 100);

● The first line creates an object of the Point class, and the second and third lines each create an

object of the Rectangle class.

OOP - Initiating Objects with Constructors

● Each of these statements has three parts

● Declaration: The code set in bold are all variable declarations that associate a variable name with an

object type.

● Instantiation: The new keyword is a Java operator that creates the object.

● Initialization: The new operator is followed by a call to a constructor, which initializes the new

object.

OOP - Primitive Types vs. Reference Types

● Last class we discussed primitive types
○ Who remembers what they were

○ Examples?

OOP - Primitive Types vs. Reference Types

● Reference types are any instantiable class as well as arrays
○ String,

○ Scanner,

○ Random,

○ Die,

○ int[],

○ String[],

○ ArrayList<>

○ HashMap<>

Assignment

● Create an application that uses gets and sets to store some information for a student
○ Think of attributes a student would have

Summary

Live private coaching sessions for Java

● Private tutoring sessions for software design and engineering- Weekly and

monthly plans

● Java programming language- Private tutoring sessions

https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language

Coding-bootcamps.com

Thank You

