
By Jim Sullivan
from Coding Bootcamps

Coding-bootcamps.com

Introduction to Java
Programming Language

https://coding-bootcamps.com/
https://coding-bootcamps.com/

Defining Classes Using
Inheritance
Session 8

Brief Recap
● Re-hash what we’ve covered in

our last class

Objective - Discuss The Following

● Superclasses and Subclasses

● Advantages of Using Inheritance

● protected Class Members

● Constructors in Subclasses

Materials
● These Powerpoint Slides

OOP - Inheritance

● Allows programmers to create new classes based on existing

classes

● Methods and attributes from the parent class are inherited by

the newly-created class

● New methods and attributes can be created in the new class,

but doesn’t affect the parent class.

OOP - Inheritance

● Example

public class Bicycle {

public int cadence;
public int gear;
public int speed;

public Bicycle(int startCadence, int startSpeed, int startGear) {
 gear = startGear;
 cadence = startCadence;
 speed = startSpeed;
}

public void setCadence(int newValue) {
 cadence = newValue;
}

public void setGear(int newValue) {
 gear = newValue;
}

public void applyBrake(int decrement) {
 speed -= decrement;
}

public void speedUp(int increment) {
 speed += increment;
}

}

OOP - Inheritance - Example

public class MountainBike extends Bicycle {

// the MountainBike subclass has
// one field
public int seatHeight;

// the MountainBike subclass has
// one constructor
public MountainBike(int startHeight, int startCadence,
 int startSpeed, int startGear) {
 super(startCadence, startSpeed, startGear);
 seatHeight = startHeight;
}

// the MountainBike subclass has
// one method
public void setHeight(int newValue) {
 seatHeight = newValue;
}

}

OOP - Inheritance

● Mountain Bike inherited all the fields and

methods of Bicycle

● It also added the field ‘seatHeight’

● It also added the method to adjust the seat

height

OOP - Inheritance

OOP - Abstract Classes

● Abstract classes are classes that contain one or more abstract methods.

● An abstract method is a method that is declared, but contains no implementation.

● Abstract classes may not be instantiated, and require subclasses to provide

implementations for the abstract methods.

OOP - Abstract Classes (Example)

public abstract Animal
{
 public void eat(Food food)
 {
 // do something with food....
 }

 public void sleep(int hours)
 {
 try
 {
 // 1000 milliseconds * 60 seconds * 60 minutes * hours
 Thread.sleep (1000 * 60 * 60 * hours);
 }
 catch (InterruptedException ie) { /* ignore */ }
 }

 public abstract void makeNoise();
}

OOP - Abstract Classes (Continued)

public Dog extends Animal
{
 public void makeNoise() { System.out.println ("Bark! Bark!"); }
}

public Cow extends Animal
{
 public void makeNoise() { System.out.println ("Moo! Moo!"); }
}

OOP - protected Class Members

● Java provides a number of access modifiers to set access

levels for classes, variables, methods, and constructors.
○ Visible to the package, the default. No modifiers are needed

○ Visible to the class only (private).

○ Visible to the world (public).

○ Visible to the package and all subclasses (protected).

OOP - protected Class Members

● Default Access Modifier - No Keyword
○ Default access modifier means we do not explicitly declare an

access modifier for a class, field, method, etc

○ A variable or method declared without any access control

modifier is available to any other class in the same package. The

fields in an interface are implicitly public static final and the

methods in an interface are by default public.

String version = "1.5.1";

boolean processOrder() {

 return true;

}

OOP - protected Class Members

● Private Access Modifier - Private
○ Methods, variables, and constructors that are declared private

can only be accessed within the declared class itself.

○ Methods, variables, and constructors that are declared private

can only be accessed within the declared class itself.

○ Variables that are declared private can be accessed outside the

class, if public getter methods are present in the class.

○ Using the private modifier is the main way that an object

encapsulates itself and hides data from the outside world.

public class Logger {
 private String format;

 public String getFormat() {
 return this.format;
 }

 public void setFormat(String
format) {
 this.format = format;
 }
}

OOP - protected Class Members

● Public Access Modifier - Public
○ A class, method, constructor, interface, etc. declared public can

be accessed from any other class. Therefore, fields, methods,

blocks declared inside a public class can be accessed from any

class belonging to the Java Universe.

○ However, if the public class we are trying to access is in a

different package, then the public class still needs to be

imported. Because of class inheritance, all public methods and

variables of a class are inherited by its subclasses.

public static void main(String[]

arguments) {

 // ...

}

OOP - protected Class Members

● Protected Access Modifier - Protected
○ Variables, methods, and constructors, which are

declared protected in a superclass can be accessed

only by the subclasses in other package or any class

within the package of the protected members' class.

○ The protected access modifier cannot be applied to

class and interfaces. Methods, fields can be declared

protected

○ Protected access gives the subclass a chance to use

the helper method or variable, while preventing a

nonrelated class from trying to use it.

class AudioPlayer {
 protected boolean openSpeaker(Speaker sp)
{
 // implementation details
 }
}

class StreamingAudioPlayer {
 boolean openSpeaker(Speaker sp) {
 // implementation details
 }
}

Assignment

For this homework assignment, you will be writing software in support of a Dessert Shoppe which sells candy by the

pound, cookies by the dozen, ice cream, and sundaes (ice cream with a topping). Your software will be used for the

checkout system.

To do this, you will implement an inheritance hierarchy of classes derived from a DessertItem abstract superclass.

The Candy, Cookie, and IceCream classes will be derived from the DessertItem class.

The Sundae class will be derived from the IceCream class.

You will also write a Checkout class which maintains a list (Set) of DessertItem's

The Checkout class, provides methods to enter dessert items into the cash register, clear the cash register, get the

number of items, get the total cost of the items (before tax), get the total tax for the items, and get a String representing a

receipt for the dessert items.

Summary

Live private coaching sessions for Java

● Private tutoring sessions for software design and engineering- Weekly

and monthly plans

● Java programming language- Private tutoring sessions

https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language

Coding-bootcamps.com

Thank You

