
By Jim Sullivan
from Coding Bootcamps

Coding-bootcamps.com

Introduction to Java
Programming Language

https://coding-bootcamps.com/
https://coding-bootcamps.com/

Writing Methods (Functions)
Session 5

Brief Recap
● Re-hash what we’ve covered in

our last class

Objective - Discuss The Following

● Static vs. Dynamic Allocation

● Declaring Methods

● Declaring Methods with Multiple Parameters

● Method-Call Stack

● Scope of Declarations

● Argument Promotion and Casting

● Designing Methods for Reusability

● Method Overloading

Materials
● These Powerpoint Slides

Methods - Declaring Methods

● Last course we discussed how to declare methods.
○ Who remembers what the modifier types are?

○ What is the return type?

○ What is the parameter list?

○ Where does the body go?

Methods - Declaring Methods

● Suppose we want to modify a class where a method has multiple inputs.
○ The best way to accomplish this is to use parameters for passing additional information

○ To write a method that takes a parameter, you list the type and name of the parameter in

parentheses.

○ If you want a method with multiple parameters, list each parameter's type and name in the method

declaration's parentheses, separated by commas.

○

Methods - Declaring Methods with Multiple
Parameters

public class MyClass

{

 public void doSomething(int i)

 {

 ...

 }

 public void doSomething(int i, String s)

 {

 ...

 }

 public void doSomething(int i, String s, boolean b)

 {

 ...

 }

}

The Method-Call Stack

● The Stack keeps the state of all active methods

 (those that have been invoked but have not yet completed)

● When a method is called a new stack frame for it is added to

 the top of the stack, this stack frame is where space for the

 method’s local variables and parameters are allocated

● When a method returns, its stack frame is removed from the

 top of the stack (space for its local vars and params is de-allocated)

● Space for local variables and parameters exist only while the

 method is active (it has a stack frame on the Stack)

● local variables and parameters are only in scope when they are in

 the top stack frame (when this method’s code is being executed)

The Method-Call Stack (Example)

public class TestMethodCalls {

public static void main(String[] args) {

Foo f1, f2;

int x=8;

f1 = new Foo(10);

f2 = new Foo(12);

f1.setVal(x);

x = f1.add(f2, x);

 }

public class Foo {

private int x;

public Foo(int val) { x = val; }

public void setVal(int val) { x = val; }

public int getVal() { return x; }

public int plus(Foo f, int val) {

int result;

result = f.getVal() + x + val;

return result;

}

}

The Method-Call Stack (What happens)

● We start executing code in

main:

• there is a single stack frame

containing main’s local

variables

The Method-Call Stack (What happens)

● When main calls f1’s setVal

method a new stack frame is

added that holds setVal’s

parameters and local variables

The Method-Call Stack (What happens)

● Implicitly, a reference to the

object referred to by f1 is

passed as well:

• setVal is called from within

this object, so its members are

in scope as well as all

parameters and local variables

of setVal

The Method-Call Stack (What happens)

● When main calls add, we are

passing the value of object ref

f2:

• add’s parameter f refers to

the same object as f2 does

The Method-Call Stack (What happens)

● If a method changes the value

of a parameter, it does not

change the argument’s value:

The Method- Scope of Declarations

● Scope of a variable is the part of the program where the variable is accessible.

● All identifiers are lexically (or statically) scoped
○ i.e.scope of a variable can determined at compiler time and independent of function call stack.

● Java programs are organized in the form of classes. Every class is part of some package.

The Method- Scope of Declarations

● Member Variables (Class Level Scope)
○ These variables must be declared inside class (outside any function). They can be directly accessed

anywhere in class. Let’s take a look at an example:

 public class Test
{
 // All variables defined directly inside a class
 // are member variables
 int a;
 private String b
 void method1() {....}
 int method2() {....}
 char c;
}

The Method- Scope of Declarations

● We can declare class variables anywhere in class, but outside methods.

● Access specified of member variables doesn’t effect scope of them within a class.

● Member variables can be accessed outside a class with following rules

The Method- Scope of Declarations

● Local Variables (Method Level Scope)
○ Variables declared inside a method have method level scope and can’t be accessed outside the method.

public class Test

{

 void method1()

 {

 // Local variable (Method level scope)

 int x;

 }

}

The Method- Scope of Declarations

● Loop Variables (Block Scope)
○ A variable declared inside pair of brackets “{” and “}” in a method has scope withing the brackets only.

class Test

{

 public static void main(String args[])

 {

 for (int x = 0; x < 4; x++)

 {

 System.out.println(x);

 }

 // Will produce error

 System.out.println(x);

 }

}

The Method- Scope of Declarations

● Some Important Points about Variable scope in Java:
○ In general, a set of curly brackets { } defines a scope.

○ In Java we can usually access a variable as long as it was defined within the same set of brackets as the

code we are writing or within any curly brackets inside of the curly brackets where the variable was defined.

○ Any variable defined in a class outside of any method can be used by all member methods.

○ When a method has same local variable as a member, this keyword can be used to reference the current

class variable.

○ For a variable to be read after the termination of a loop, It must be declared before the body of the loop.

The Method- Argument Promotion and
Casting

● Argument promotion—implicitly converting an argument’s value to the type that the method

expects to receive (if possible) in its corresponding parameter.
○ For example, an app can call Math method Sqrt with an integer argument even though the method expects

to receive a double argument.

System.out.println(Math.sqrt(16));

The Method- Argument Promotion and
Casting

● Such conversions may lead to compilation errors if promotion rules are not satisfied.
○ The promotion rules specify which conversions are allowed—that is, which conversions can be performed

without losing data.

○ In the Sqrt example above, an int is converted to a double without changing its value.

■ However, converting a double to an int truncates the fractional part of the double value—thus, part of

the value is lost.

■ Also, double variables can hold values much larger (and much smaller) than int variables, so

assigning a double to an int can cause a loss of information when the double value doesn’t fit in the

int.

■ Converting large integer types to small integer types (e.g., long to int) also can produce incorrect

results.

The Method- Argument Promotion and
Casting

● The promotion rules apply to expressions containing values of two or more simple types and to

simple-type values passed as arguments to methods.

● Each value is promoted to the appropriate type in the expression. (Actually, the expression uses a

temporary copy of each promoted value—the types of the original values remain unchanged.)

The Method- Argument Promotion and
Casting

The Method- Method Overloading

● We previously discussed having the same method with multiple parameters

● Method Overloading is a feature that allows a class to have two or more methods having same

name, if their argument lists are different.

● Argument lists could differ in
○ Number of parameters.

○ Data type of parameters.

○ Sequence of Data type of parameters.

Assignment

● Use what we’ve learned so far to create a simple application that can do the following
○ Create a car (With attributes)

○ A method to modify the car (with method overloading) to do things like paint the car, set the size of

the tires, etc

Assignment

Reminder, this is how you read and accept keyboard input

● Scanner keyboard = new Scanner(System.in);

System.out.println("enter an integer");

int myint = keyboard.nextInt();

Summary

Live private coaching sessions for Java

● Private tutoring sessions for software design and engineering- Weekly and

monthly plans

● Java programming language- Private tutoring sessions

https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language

Coding-bootcamps.com

Thank You

