0000
Coding-bootcamps.com

Introduction to Java }

. L 4 g
Programming Language . ©“
. .

- L 4

‘e

Coding

By Jim Sullivan Bootcamps
from

https://coding-bootcamps.com/
https://coding-bootcamps.com/

Deeper Into Classes and
Objects

Session 7/

e Re-hash what we've covered in
our last class

Brief Recap

Objective - Discuss The Following

Controlling Access to Class Members
Referencing the Current Object Using this
Overloading Constructors

Default and No-Argument Constructors
Composition of Classes

Garbage Collection and Destructors

The finalize Method

Static Class Members

e These Powerpoint Slides

Materials

OOP - Encapsulation

e Encapsulation is used for controlling access to class members

e Get's and Set’s are the actual access points of the instance of
this class. Therefore, any class that wants to get this data needs
to use the ‘getter’

e Likewise, if an attribute was private and no ‘getter’ was present,
this data would be hidden

public class EncapTest {
private String name;

OOP - private String idNum;

private int age;

Encapsulation publie iht) gethze () |
return age;
}

e Example
public String getName() {

return name;

}

public String getIdNum() {
return idNum;

}

public void setAge(int newAge) {
age = newAge;

}

public void setName(String newName) {
name = newName;

}

public void setIdNum(String newId) {
idNum = newld;

}

OOP - Encapsulation - Example

public class RunEncap {

public static void main(String args[]) {
EncapTest encap = new EncapTest();
encap.setName("James");
encap.setAge(20);
encap.setIdNum("12343ms");

System.out.print("Name : " + encap.getName() + " Age : "
encap.getAge());

}
}

The ‘this’ keyword

e Within an instance method or a constructor, this is a reference to
the current object
o The object whose method or constructor is being called.
o You can refer to any member of the current object from
within an instance method or a constructor by using this.
e The most common reason for using the this keyword is because
a field is shadowed by a method or constructor parameter.

The ‘this’ keyword

public class Point {
public int x = 0;
public inty = 0;

/lconstructor
public Point(int x, int y) {
this.x = X;
this.y =y;
}
}

Using ‘this’ with a Constructor

e From within a constructor, you can also use the this keyword to call
another constructor in the same class.
o Doing so is called an explicit constructor invocation.
o Here's another Rectangle class, with a different implementation
from the one in the Objects section.

Using ‘this’ with a Constructor

public class Rectangle {
private int x, v;
private int width, height;

public Rectangle() {
this(0, 0, 1, 1);

}

public Rectangle(int width, int height) {
this(0, 0, width, height);

public Rectangle(int x, int y, int width, int height) {
this.x = x;
this.y =y;
this.width = width;
this.height = height;
}

Overloading Constructors

e It's common to overload constructors -
o Define multiple constructors which differ in number and/or
types of parameters.

Overloading Constructors

public class Perimeter

{
public Perimeter(int
X)
{
System.out.println("Circle perimeter: " + 2*Math.PI*x);
}
public Perimeter(int x, int
y)
{
System.out.println("Rectangle perimeter: " +2*(x+y));
}
public static void main(String args[])
{

Perimeter pl
Perimeter p2

}
}

new Perimeter(10);
new Perimeter(16,);

Default And No Argument

e A constructor without parameters is called as "default
constructor” or "no-args constructor".

e Itis called default because if the programmer does not write
one, the compiler will create and supply one.

e The default constructor supplied does not have any functionality
(output).

Overloading Constructors

public class Demo

{
public Demo()

{
System.out.printin("From default
constructor");
}
public static void main(String
argsl])
{

Demo d1 = new Demo();
Demo d2 = new Demo();

}
}

Composition of Classes

e Composition is the design technique to implement has-a
relationship in classes.

e We can use java inheritance or Object composition for code
reuse.

e Composition in java is achieved by using instance variables that
refers to other objects. For example, a Person has a Job.

public class Employee {
private String name;
private String address;
private int number;

public Employee(String name, String address, int number) {
System.out.println("Constructing an Employee");

this.name = name;

this.address = address;

this.number = number;

}

public void mailCheck() {

Composition

e Example1

System.out.println("Mailing a check to " + this.name + " " +
this.address);

}

public String toString() {

return name + " " + address + " " + number;

}

public String getName() {
return name;

}

public String getAddress() {
return address;

}

public void setAddress(String newAddress) {
address = newAddress;

}

public int getNumber() {
return number;

}

public class Salary extends Employee {
private double salary;

public Salary(String name, String address, int number, double
salary) {

CompOSition super(name, address, number);

setSalary(salary);
}

e Example 2 public void mailCheck() {
System.out.println("Within mailCheck of Salary class ");

System.out.println("Mailing check to " + getName()

+ " with salary " + salary);

}

public double getSalary() {
return salary;

}

public void setSalary(double newSalary) {
if(newSalary >=) {
salary = newSalary;
}
}

public double computePay() {
System.out.println("Computing salary pay for
return salary/52;

}

+ getName());

Memory Management

e You all know that an object is created in the memory using new
operator.

e The constructoris used to initialize the properties of that object.
e When an object is no more required, it must be removed from the
memory so that that memory can be reused for other objects.

e Removing unwanted objects or abandoned objects from the
memory is called garbage collection (GC)

Garbage Collection and Destructors

e Java Memory Management, with its built-in garbage collection, is
one of the language’s finest achievements.

e It allows developers to create new objects without worrying
explicitly about memory allocation and deallocation, because the
garbage collector automatically reclaims memory for reuse.

The finalize Method

e Thejava.lang.Object.finalize() is called by the garbage collector
on an object when garbage collection determines that there are
no more references to the object.

e A subclass overrides the finalize method to dispose of system
resources or to perform other cleanup.

Static Class Members

e When a number of objects are created from the same class

blueprint, they each have their own distinct copies of instance
variables.

e In an example, consider a Bicycle class.

o The instance variables could be things like cadence, gear,
and speed.

o Each Bicycle object has its own values for these variables,
stored in different memory locations.

Static Class Members

e Sometimes, you want to have variables that are common to all objects.

(@)

This is accomplished with the static modifier.

e Fields that have the static modifier in their declaration are called static fields or
class variables.

O

(@)

©)

They are associated with the class, rather than with any object.

Every instance of the class shares a class variable, which is in one fixed
location in memory.

Any object can change the value of a class variable, but class variables can
also be manipulated without creating an instance of the class.

Static Class Members

public class Bicycle {

private int cadence;
private int gear;

private int speed;

// add an instance variable for the object ID
private int id;

// add a class variable for the
// number of Bicycle objects instantiated
private static int numberOfBicycles = 0;

Static Class Members

e Class variables are referenced by the class name itself, as in

Bicycle.numberOfBicycles

Homework

e Write a simple Vehicle class that has fields for (at least) current speed, current direction in
degrees, and owner name.

o

Add a static field to your Vehicle class for the highest Vehicle Identification Number
issued, and a non-static field that holds each vehicle's ID number.

Write a main method for your Vehicle class that creates a few vehicles and prints out their
field values. Note that you can also write a separate tester program as well.

Add two constructors to Vehicle. A no-arg constructor and one that takes an initial owner's
name. Modify the tester program from the previous step and test your design.

Make the fields in your Vehicle class private, and add accessor methods for the fields.
Which fields should have methods to change them and which should not?

Add a static method to Vehicle that returns the highest identification number used so far.

S u m m a ry e What we learned in this session

Live private coaching sessions for Java

e Private tutoring sessions for software design and engineering- Weekly and
monthly plans

e Java programming language- Private tutoring sessions

https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language

0000
Coding-bootcamps.com

Thank You :'@ .

‘e

Coding

Bootcamps

