
By Jim Sullivan
from Coding Bootcamps

Coding-bootcamps.com

Introduction to Java
Programming Language

https://coding-bootcamps.com/
https://coding-bootcamps.com/

Increasing Convenience by

Using Polymorphism
Session 9

Brief Recap
● Re-hash what we’ve covered in

our last class

Objective - Discuss The Following

● Purpose of Polymorphic Behavior

● The Concept of a Signature

● Abstract Classes and Methods

● final Methods and Classes

● Purpose of Interfaces

● Using and Creating Interfaces

● Common Interfaces of the Java API

Materials
● These Powerpoint Slides

OOP - Polymorphism

● Polymorphism is the ability of an object to take on many forms.

○ Polymorphism occurs when a parent class reference is used to refer to a child

class object

OOP - Polymorphism

● How to tell if something is polymorphic

○ It can pass the “IS-A” test

○ In JAVA all objects are polymorphic since any java object will pass the IS-A

test for their own type for the class Object

● For example

○ A deer IS-A Animal

○ A deer IS-A Vegetarian

○ A deer IS-A Object

OOP -

Polymorphism

● Example 1

public class Employee {
 private String name;
 private String address;
 private int number;

 public Employee(String name, String address, int number) {
 System.out.println("Constructing an Employee");
 this.name = name;
 this.address = address;
 this.number = number;
 }

 public void mailCheck() {
 System.out.println("Mailing a check to " + this.name + " " + this.address);
 }

 public String toString() {
 return name + " " + address + " " + number;
 }

 public String getName() {
 return name;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String newAddress) {
 address = newAddress;
 }

 public int getNumber() {
 return number;
 }
}

OOP -

Polymorphism

● Example 2

public class Salary extends Employee {
 private double salary; // Annual salary

 public Salary(String name, String address, int number, double salary) {
 super(name, address, number);
 setSalary(salary);
 }

 public void mailCheck() {
 System.out.println("Within mailCheck of Salary class ");
 System.out.println("Mailing check to " + getName()
 + " with salary " + salary);
 }

 public double getSalary() {
 return salary;
 }

 public void setSalary(double newSalary) {
 if(newSalary >= 0.0) {
 salary = newSalary;
 }
 }

 public double computePay() {
 System.out.println("Computing salary pay for " + getName());
 return salary/52;
 }
}

OOP - Abstract Classes

● Abstract classes are classes that contain one or more abstract methods.

● An abstract method is a method that is declared, but contains no implementation.

● Abstract classes may not be instantiated, and require subclasses to provide

implementations for the abstract methods.

OOP - Abstract Classes

● An abstract class is a class that is declared abstract—it may or may not include

abstract methods. Abstract classes cannot be instantiated, but they can be

subclassed.

● An abstract method is a method that is declared without an implementation

(without braces, and followed by a semicolon), like this:

abstract void moveTo(double deltaX, double deltaY);

OOP - Abstract Classes

● If a class includes abstract methods, then the class itself must be declared

abstract, as in:

public abstract class GraphicObject {
 // declare fields
 // declare nonabstract methods
 abstract void draw();
}

OOP - Abstract

Classes

● Example

public abstract Animal
{
 public void eat(Food food)
 {
 // do something with food....
 }

 public void sleep(int hours)
 {
 try
{
// 1000 milliseconds * 60 seconds * 60 minutes *
hours
Thread.sleep (1000 * 60 * 60 * hours);
}
catch (InterruptedException ie) { /* ignore */ }
 }

 public abstract void makeNoise();
}

OOP - Abstract Classes (Continued)

public Dog extends Animal
{
 public void makeNoise() { System.out.println ("Bark!
Bark!"); }
}

public Cow extends Animal
{
 public void makeNoise() { System.out.println ("Moo!
Moo!"); }
}

OOP - Final Classes & Methods

● You can declare some or all of a class's methods final. You use the final keyword in

a method declaration to indicate that the method cannot be overridden by

subclasses.

● The Object class does this—a number of its methods are final.

● You might wish to make a method final if it has an implementation that should not be

changed and it is critical to the consistent state of the object. For example, you

might want to make the getFirstPlayer method in this ChessAlgorithm class final:

OOP - Final Classes & Methods

class ChessAlgorithm {
 enum ChessPlayer { WHITE, BLACK }
 ...
 final ChessPlayer getFirstPlayer() {
 return ChessPlayer.WHITE;
 }
 ...
}

OOP - Interfaces

● As you've already learned, objects define their interaction with the outside world

through the methods that they expose.

● Methods form the object's interface with the outside world

● In its most common form, an interface is a group of related methods with empty

bodies.

OOP - Interfaces

interface Bicycle {

 // wheel revolutions per minute
 void changeCadence(int newValue);

 void changeGear(int newValue);

 void speedUp(int increment);

 void applyBrakes(int decrement);
}

Assignment

Suppose a class Shape has been defined like this:

Define a Rectangle subclass from the Shape class that contains
the methods/data members below and any other necessary
methods. Assume the upper left hand corner of the rectangle is
(x,y) which is defined in Shape.
· Additional data members to contain the height and width of
the rectangle
· A perimeter method to return the perimeter of the rectangle
· Override the toString() method so that it returns something

like:

“Rectangle: upper left corner: (x, y) width: w
 height: h” where x, y, w, and h are replaced by
the values in the data members of Shape and Rectangle.

Suppose we have a second class Circle that also inherits from
Shape. Also suppose we have a Shape array, arrayOfShapes,
and it has already been filled with a collection of circles and
rectangles. Write code to display only the elements in
arrayOfShapes that are of type Rectangle.

public abstract class Shape
{
private int x; //the x coordinate of the shape
private int y; //the y coordinate of the shape
public String toString()
{
 return "(" + x + ", " + y + ")";
}
public abstract double area ();
public abstract String getName(); // returns the shape's name
}

Summary

Live private coaching sessions for Java

● Private tutoring sessions for software design and engineering- Weekly and

monthly plans

● Java programming language- Private tutoring sessions

https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language

Coding-bootcamps.com

Thank You

