
By Jim Sullivan
from Coding Bootcamps

Coding-bootcamps.com

Introduction to Java
Programming Language

https://coding-bootcamps.com/
https://coding-bootcamps.com/

Application Development
Fundamentals

Session 2

Brief Recap
● Re-hash what we’ve covered in

our first class

Objective

● Learn about the structure of a Java Program

● Learn about memory concepts

● Learn about Fundamental Data Type Declarations

● Learn about Fundamental I/O Concepts

● Learn about Fundamental Operators

● Make our first program

Materials
● These Powerpoint Slides

Structure Of A Java Program

● A package

● A class

● Data members

● User defined methods

● Block Statements

Structure Of A Java Program (Package)

● A package
○ A package is a collection of classes, interfaces and sub-packages.

○ A sub package contains collection of classes, interfaces and sub-sub packages.

● java.lang.*; package is imported by default and this package is known as

default package.

Structure Of A Java Program (Class)

● A class
○ A class is keyword used for developing user defined data type and every java program

must start with a concept of class.

○ A class has a class name and that’s what defines the actual data type

● Example:
○ public class HelloWorld

Structure Of A Java Program (Data Member)

● Data members
○ Represent either instance or static they will be selected based on the name of the class.

● Example:
○ int age = 17;

○ String name = “Bryan”;

○ double gpa = 3.2

Structure Of A Java Program
(User defined methods)

● User-defined methods are meant for performing the operations either once

or each and every time.

● Example:
○ print_age();

○ calulate_gpa();

○ get_course_schedule();

Structure Of A Java Program
(Block Statements)

● Block Statements represent sets of executable statements which are in

term calling user-defined methods

● Example:
○ System.out.println(“Hello Class!”);

Structure Of A Java Program
(Putting it all together)

public class HelloWorld {

 public static void main(String[] args) {

 // Prints "Hello, World" to the terminal window.

 System.out.println("Hello, World");

 }

}

Understanding Memory Management

● Variable names such as age, name,

and gpa actually correspond to

locations in the computer's memory.

● Every variable has a name, a type, a

size (in bytes) and a value.

Fundamental Data Type Declarations

● In JAVA there are primitive (basic) data types
○ float (1.234)

○ Int (17)

○ double (3.14)

○ String (“Bryan”)

○ boolean (false)

○ char (‘t’)

○ byte (0)

Fundamental Data Type Declarations

● Java is a strongly typed language
○ Every variable must have an explicit type

○ Expressions assigned to the variable must be a compatible type

● Local variables (declared within methods) must be declared and initialized

before they are used

● Class and instance variables can be declared anywhere and are initialized

to defaults:

● Multiple variables can be declared on a singe line: int i, j, k;

Fundamental I/O Concepts

● The java.io package contains nearly every class you might ever need to

perform input and output (I/O) in Java.

● All these streams represent an input source and an output destination.

● A stream can be defined as a sequence of data. There are two kinds of

Streams
○ InPutStream − The InputStream is used to read data from a source.

○ OutPutStream − The OutputStream is used for writing data to a destination.

Fundamental I/O Concepts

● Java byte streams are used to perform input and output of 8-bit bytes.

● The most frequently used classes are, FileInputStream and

FileOutputStream.

Fundamental I/O
Concepts

import java.io.*;
public class ReadConsole {

 public static void main(String args[]) throws IOException {
 InputStreamReader cin = null;

 try {
 cin = new InputStreamReader(System.in);
 System.out.println("Enter characters, 'q' to quit.");
 char c;
 do {
 c = (char) cin.read();
 System.out.print(c);
 } while(c != 'q');
 }finally {
 if (cin != null) {
 cin.close();
 }
 }
 }
}

Fundamental I/O Concepts

$javac ReadConsole.java

$java ReadConsole

Enter characters, 'q' to quit.

1

1

e

e

q

q

Fundamental
Operators
(Arithmetic)

● Let A = 10 and B = 20

Operator Description Example

+ (Additi

on)

Adds the values on either side of the

operator

A + B = 30

- (Subtr

action)

Subtracts right-hand operand from left-

hand operand.

A - B = -10

 *

(Multiplication)

Divides left-hand operand by right-hand

operand.

A * B will give 200

 / (Division)

Adds the values on either side of the

operator

B / A will give 2

 %

(Modulus)

Divides left-hand operand by right-hand

operand and returns remainder.

B % A will give 0

 ++

(Increment)

Increases the value of operand by 1.

B++ gives 21

 --

(Decrement)

Decreases the value of operand by 1.

B-- gives 19

Fundamental
Operators (Logical
Operators)

● Let A = 10 and B = 20

Operator Description Example

 == (equal

to)

Checks if the values of two operands are equal

or not, if yes then condition becomes true.

(A == B) is not true.

 != (not

equal to)

Checks if the values of two operands are equal

or not, if values are not equal then condition

becomes true.

(A != B) is true.

 > (greater

than)

Checks if the value of left operand is greater

than the value of right operand, if yes then

condition becomes true.

(A > B) is not true.

< (less than)

Checks if the value of left operand is less than

the value of right operand, if yes then condition

becomes true.

(A < B) is true.

>= (greater

than or

equal to)

Checks if the value of left operand is greater

than or equal to the value of right operand, if

yes then condition becomes true.

(A >= B) is not true.

<= (less

than or

equal to)

Checks if the value of left operand is less than

or equal to the value of right operand, if yes

then condition becomes true.

(A <= B) is true.

Building and Deploying a Java Program

● Create the program by typing it into a text editor and saving it to a file

named, say, MyProgram.java.

● Compile it by typing "javac MyProgram.java" in the terminal window.

● Execute (or run) it by typing "java MyProgram" in the terminal window.

● The first step creates the program; the second translates it into a language

more suitable for machine execution (and puts the result in a file named

MyProgram.class); the third actually runs the program.

Building and Deploying a Java Program

● Creating a Java program.
○ A program is nothing more than a sequence of characters, like a sentence, a paragraph, or

a poem. To create one, we need only define that sequence characters using a text editor in

the same way as we do for email.

○ HelloWorld.java is an example program. Type these character into your text editor and

save it into a file named HelloWorld.java.

public class HelloWorld {

 public static void main(String[] args) {

 // Prints "Hello, World" in the terminal window.

 System.out.println("Hello, World");

 }

}

Building and Deploying a Java Program

● Compiling a Java program.
○ A compiler is an application that translates programs from the Java language to a

language more suitable for executing on the computer.

○ It takes a text file with the .java extension as input (your program) and produces a file with

a .class extension (the computer-language version).

● To compile HelloWorld.java type the boldfaced text below at the terminal.

 javac HelloWorld.java

Building and Deploying a Java Program

● Compiling a Java program.
○ A compiler is an application that translates programs from the Java language to a

language more suitable for executing on the computer.

○ It takes a text file with the .java extension as input (your program) and produces a file with

a .class extension (the computer-language version).

● To compile HelloWorld.java type the text below at the terminal.

 javac HelloWorld.java

● To run the application type the text below at the terminal

 java HelloWorld

Assignment

● Write a program that prints Hello World 10 times

● Write a program that shows understanding of all the operator types

Summary

Live private coaching sessions for Java

● Private tutoring sessions for software design and engineering- Weekly and

monthly plans

● Java programming language- Private tutoring sessions

https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-software-design-and-engineering
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-java-programming-language

Coding-bootcamps.com

Thank You

