
1

Introduction to Kotlin Programming

By Coding-Bootcamps.com

Course Outline

1. Kotlin Overview, Installation, and Setup

 Why Kotlin?

 Install and Setup Kotlin
o Installing the Standalone Compiler- Command Line
o Setting up Kotlin in IntelliJ IDEA
o Setting up Kotlin in Eclipse

2. Writing your first Kotlin program

3. Kotlin Variables and Data Types

 Variables

 Type inference

 Data Types

 Arrays

 Type Conversions

4. Kotlin Operators with Examples

 Operations on Numeric Types

 Bitwise Operators

 Operations on Boolean Types

 Operations on Strings

2

5. Kotlin Control Flow: if and when expressions, for and while loops

 If Statement

 If-Else Statement

 Using If as an Expression

 If-Else-If Chain

 When Expression

 While Loop

 do-while loop

 For Loop

 Break and Continue

6. Nullable Types and Null Safety in Kotlin

 Nullability and Nullable Types in Kotlin

 Working with Nullable Types

 Null Safety and Java Interoperability

 Nullability and Collections

7. Kotlin Functions, Default and Named Arguments, Varargs and Function
Scopes

 Defining and Calling Functions

 Function Default Arguments

 Function Named Arguments

 Variable Number of Arguments (Varargs)

 Function Scope
o 1. Top Level Functions
o 2. Member Functions
o 3. Local/Nested Functions

8. Kotlin Infix Notation - Make function calls more intuitive

3

Session 1- Kotlin Overview, Installation, and Setup

Kotlin is a programming language developed by JetBrains, the same company
that has built world-class IDEs like IntelliJ IDEA, PhpStorm, PyCharm,
ReSharper etc.

It runs on the Java Virtual Machine (JVM), and can also be compiled to
JavaScript and Machine Code.

In this session, we will give you a brief overview of Kotlin and its features. We wil
also help you set up Kotlin in your system and prepare you for future sessions.

Why Kotlin?

In today’s world where we have a dozen programming language for every
possible task, following are few reasons to choose Kotlin as the primary
language for your next exciting project -

1. Statically Typed

Kotlin is a Statically typed programming language. This means that the type of
every variable and expression is known at compile time.

The advantage with static typing is that the compiler can validate the methods
calls and property access on the objects at compile time itself and prevent lots of
trivial bugs that would otherwise crop up at runtime.

Although Kotlin is a statically typed language, it doesn’t require you to explicitly
specify the type of every variable you declare. Most of the time, Kotlin can infer
the type of a variable from the initializer expression or the surrounding context.
This is called Type Inference. You’ll learn more about Type inference in
the Variables and Data Types session.

2. Concise

Kotlin is concise. It drastically reduces the amount of boilerplate code that you
have been writing all the time in other OOP languages like Java.

https://kotlinlang.org/

4

It provides rich idioms for performing common tasks. For example, You can
create a POJO class with getters,
setters, equals(), hashCode() and toString() methods in a single line -

data class User(val name: String, val email: String, val country: String)

3. Safe

Kotlin is safe. It avoids the most dreaded and annoying NullPointerExceptions by

supporting nullability as part of its type system.

It works like this - Every variable in Kotlin is non-null by default:

String str = "Hello, World" // Non-null type (can't hold null value)

str = null // Compiler Error

To allow a variable to hold null value, you need to explicitly declare it

as nullable:

String nullableStr? = null // Nullable type (can be null)

Since Kotlin knows which variables are nullable and which are not, It can detect
and disallow unsafe calls at compile time itself that would otherwise result in
a NullPointerException at runtime -

println(nullableStr.length()) // Compiler Error

Kotlin doesn’t allow the method call length() on the nullableStr variable because
the call is not safe and may lead to NullPointerException.

However, if you add a null check then the method call is allowed -

if(nullablStr != null) {

 println(nullableStr.length())

5

}

Notice how Kotlin is enforcing developers to write safe code by distinguishing
between nullable and non-null types.

4. Explicit

Kotlin is Explicit. It will do/allow things only if you tell it to do so. Explicitness is
considered a good thing. Being explicit means being specific about your design
choices and not hiding anything from the readers or consumers of your code.

Following are few examples of Explicitness in Kotlin -

 Kotlin doesn’t allow implicit type conversions, for example, int to long,

or float to double. It provides methods like toLong() and toDouble() to do so
explicitly.

 All the classes in Kotlin are final (non-inheritable) by default. You need to
explicitly mark a class as open to allow other classes to inherit from it.

Similarly, all the properties and member functions of a class are final by

default. You need to explicitly mark a function or property as open to allow
child classes to override it.

 If you’re overriding a parent class function or property, then you need to
explicitly annotate it with the override modifier.

5. Easy to learn.

Kotlin has a very low learning curve. The basic syntax looks a lot like Java. If you
have a little experience in Java or any other OOP language then you’ll be able to
pick up Kotlin in a matter of hours.

6. Functional and Object Oriented Capabilities

Kotlin has both functional and object-oriented capabilities. It has a rich set of
features to support functional programming which includes functional types,
lambda expressions, data classes and much more.

7. Completely interoperable with Java

https://kotlinlang.org/docs/reference/basic-syntax.html

6

Kotlin is 100% interoperable with Java. You can easily access Java code from
Kotlin and vice versa. You can use Kotlin and Java in the same project without
any problem. This enables easy adoption of Kotlin into your existing Java
projects.

8. Excellent Tooling

Kotlin has excellent tooling support. You can choose any Java IDE - IntelliJ
IDEA, Eclipse, Android Studio. All of them support Kotlin.

Moreover, you can also download Kotlin’s standalone compiler and run Kotlin
code from the command line.

7

9. Build Applications for Server Side, Android, Browser, and
Desktop

You can use Koltin to build applications for a wide range of platforms including
Server side, Android, Browser, and Desktop.

 Android has official support for Kotlin.
 On the server side, you can use Kotlin with the Spring framework which has

added full support for Kotlin in Spring version 5.
 Kotlin can be compiled to JavaScript and Machine code as well.

10. Free and Open Source

Kotlin programming language, including the compiler, libraries and all the tooling
is completely free and open source. It is available under Apache 2 license and
the complete project is hosted on Github - https://github.com/JetBrains/kotlin

Setup Kotlin

You can set up and run Kotlin programs in several ways. You can either install
kotlin’s compiler and run Kotlin programs from the command line or install and
setup Kotlin in an IDE like IntelliJ or Eclipse -

https://spring.io/
https://kotlinlang.org/docs/reference/js-overview.html
https://kotlinlang.org/docs/reference/native-overview.html
https://github.com/JetBrains/kotlin

8

 Install Kotlin’s Standalone Compiler

 Setup Kotlin in IntelliJ IDEA

 Setup Kotlin in Eclipse

Installing the Standalone Compiler

Follow the steps below to install Kotlin’s compiler -

1. Go to Kotlin releases page on Github

2. Download Kotlin’s compiler in the form of a zip file from the Assets section on
the Github releases page. The latest version of Kotlin compiler at the time of

writing this page is 1.2.10

3. Unzip the downloaded kotlin-compiler-x.x.x.zip file and store the unzipped
folder in a location where you have write access.

4. Add path-to-unzipped-folder/bin to your PATH variable.

5. Verify the installation by typing kotlinc in the command line -

$ kotlinc

Welcome to Kotlin version 1.2.10 (JRE 1.8.0_112-b16)

Type :help for help, :quit for quit

>>>

Run your first Kotlin program from the command line

Open your favorite editor and create a new file called hello.kt with the following
contents -

fun main(args: Array<String>) {

 println("Hello, World!")

}

Save the file and type the following commands to compile and run the program

$ kotlinc hello.kt

https://github.com/JetBrains/kotlin/releases/latest

9

$ kotlin HelloKt

Hello, World

Setting up Kotlin in IntelliJ IDEA

Install the latest version of IntelliJ IDEA. Kotlin comes bundled with the recent
versions of IntelliJ. You won’t need to install any plug-in separately to run Kotlin
programs.

Follow these steps to create and run a new Kotlin project in IntelliJ

1. Create a new project by selecting “Create New Project” on the welcome

screen or go to File → New → Project.

Select Kotlin on the left side menu and Kotlin/JVM from the options on the
right side -

http://www.jetbrains.com/idea/download/index.html

10

2. Specify the project’s name and location, and select a Java version (1.6+) in
the Project SDK. Once all the details are entered, click Finish to create the
project -

11

The generated project will look like this -

3. Let’s now create a new Kotlin file. Right click on src folder → New → Kotlin

File/Class.

12

A prompt will appear where you’ll need to provide a name for the file. Let’s

name it HelloWorld.

4. Now let’s write a simple hello world program in the new file that we have
created. Add the following main() function to the HelloWorld.kt file -

5. Finally, You can run the program by clicking the Kotlin icon that appears

beside the main() method -

You can also run the program by Right Clicking the HelloWorld.kt file and
selecting Run 'HelloWorldKt'.

13

Setting up Kotlin in Eclipse

I assume that you have Eclipse installed on your system. If not, download the
eclipse installer from Eclipse Downloads page, and install “Eclipse IDE for Java
Developers”.

Once Eclipse is installed, follow the steps below to setup and run Kotlin in
Eclipse -

1. Install Kotlin Plugin from Eclipse Marketplace: Go to Help → Eclipse
Marketplace, and search for Kotlin.

http://eclipse.org/downloads

14

Click install to install the plugin.

2. You will need to restart eclipse once the installation is finished.

3. Let’s verify the plugin’s installation switching to Kotlin perspective in eclipse.
Go to Window → Perspective → Open Perspective → Other. A window will open

which will show Kotlin as a new perspective. Select Kotlin and click Open to
open Kotlin perspective -

15

4. Let’s now create a new project. Select File → New → Kotlin Project. Enter the
project’s name and click finish -

16

5. A new project will be created which will look like this -

6. Let’s now create a new Kotlin file under the src folder. Right click src folder

→ New → Kotlin File -

17

7. First, add the following code in the HelloWorld.kt file, and then right-click
anywhere on the source file and click Run As → Kotlin Application to run the
application -

18

19

Session 2- Writing your first Kotlin program

The first program that we typically write in any programming language is the
“Hello, World” program. Let’s write the “Hello, World” program in Kotlin and
understand its internals.

The “Hello, World!” program in Kotlin

Open your favorite editor or an IDE and create a file named hello.kt with the

following code -

// Kotlin Hello World Program

fun main(args: Array<String>) {

 println("Hello, World!")

}

You can compile and run the program using Kotlin’s compiler like so -

$ kotlinc hello.kt

$ kotlin HelloKt

Hello, World!

You can also run the program in an IDE like Eclipse or IntelliJ. Learn how
to Setup and run Kotlin programs in your system.

Internals of the “Hello, World!” program

 Line 1. The first line is a comment. Comments are ignored by the compiler.
They are used for your own sake (and for others who read your code).

Kotlin supports two different styles of comments similar to other languages
like C, C++, and Java -

1. Single Line Comment:

20

2. // This is a Single line comment

3. Multi-line Comment:

4. /*

5. This is an example of a multi-line comment.

6. It can span over multiple lines.

7. */

 Line 2. The second line defines a function called main .

 fun main(args: Array<String>) {

 // ...

 }

Functions are the building blocks of a Kotlin program. All functions in Kotlin

start with the keyword fun followed by a name of the function (main in this

case), a list of zero or more comma-separated parameters, an optional return
type, and a body.

The main() function takes one argument - an Array of strings, and

returns Unit . The Unit type corresponds to void in Java. It is used to

indicate that the function doesn’t return any meaningful value.

The Unit type is optional. i.e. you don’t need to declare it explicitly in the

function declaration -

fun main(args: Array<String>): Unit { // `Unit` is optional

}

If you don’t specify a return type, Unit is assumed.

21

The main() function is not just any ordinary function. It is the entry point of

your program. It is the first thing that gets called when you run a Kotlin
program.

 Line 3. The third line is a statement. It prints a String “Hello, World!” to
standard output.

 println("Hello, World!") // No Semicolons needed :)

Note that we can directly use println() to print to standard output, unlike

Java where we need to use System.out.println() .

Kotlin provides several wrappers over standard Java library
functions, println is one of them.

Also, Semicolons are optional in Kotlin, just like many other modern
languages.

Session 3- Kotlin Variables and Data Types

In this session, you’ll learn how to declare variables in Kotlin, how Kotlin infers
the type of variables, and what are the basic data types supported by Kotlin for
creating variables.

You’ll also learn how to work with various data types and how to convert one type
to another.

Variables

A variable refers to a memory location that stores some data. It has a name and
an associated type. The type of a variable defines the range of values that the
variable can hold, and the operations that can be done on those values.

You can declare a variable in Kotlin using var and val keywords.

A variable declared using val keyword is immutable (read-only). It cannot be

reassigned after it is initialized -

22

val name = "Bill Gates"

name = "Satoshi Nakamoto" // Error: Val cannot be reassigned

For defining a mutable variable, i.e. a variable whose value can be changed, use

the var keyword -

var country = "USA"

country = "India" // Works

Type inference

Did you notice one thing about the variable declarations in the previous section?
We didn’t specify the type of variables.

Although Kotlin is a statically typed language, It doesn’t require you to explicitly
specify the type of every variable you declare. It can infer the type of a variable
from the initializer expression -

val greeting = "Hello, World" // type inferred as `String`

val year = 2018 // type inferred as `Int`

If you want to explicitly specify the type of a variable, you can do that like this -

// Explicitly defining the type of variables

val greeting: String = "Hello, World"

val year: Int = 2018

Note that the type declaration becomes mandatory if you’re not initializing the
variable at the time of declaration -

var language // Error: The variable must either have a Type annotation or

be initialized

23

language = "French"

The above variable declaration fails because Kotlin has no way to infer the type
of the variable without an initializer expression. In this case, you must explicitly
specify the type of the variable -

var language: String // Works

language = "French"

Data Types

Data Types are used to categorize a set of related values and define the
operations that can be done on them.

Just like other languages, Kotlin has predefined types
like Int , Double Boolean , Char etc.

In Kotlin, everything (even the basic types like Int and Boolean) is an object.

More specifically, everything behaves like an Object.

Kotlin may represent some of the basic types like numbers, characters and
booleans as primitive values at runtime to improve performance, but for the end
users, all of them are objects.

This is contrary to languages like Java that has separate primitive types

like int , doubleetc, and their corresponding wrapper types

like Integer , Double etc.

Let’s now look at all the basic data types used in Kotlin one by one -

Numbers

Numeric types in Kotlin are similar to Java. They can be categorized into integer
and floating point types.

24

Integers

 Byte - 8 bit

 Short - 16 bit

 Int - 32 bit

 Long - 64 bit

Floating Point Numbers

 Float - 32 bit single-precision floating point value.

 Double - 64 bit double-precision floating point value.

Following are few examples of numeric types -

// Kotlin Numeric Types Examples

val myByte: Byte = 10

val myShort: Short = 125

val myInt = 1000

val myLong = 1000L // The suffix 'L' is used to specify a long value

val myFloat = 126.78f // The suffix 'f' or 'F' represents a Float

val myDouble = 325.49

You can also use underscore in numeric values to make them more readable -

val hundredThousand = 100_000

val oneMillion = 1_000_000

You can declare hexadecimal and binary values like this -

val myHexa = 0x0A0F // Hexadecimal values are prefixed with '0x' or '0X'

25

val myBinary = 0b1010 // Binary values are prefixed with '0b' or '0B'

Note that Kotlin doesn’t have any representation for octal values.

Booleans

The type Boolean is used to represent logical values. It can have two possible

values true and false .

val myBoolean = true

val anotherBoolean = false

Characters

Characters are represented using the type Char . Unlike Java, Char types cannot

be treated as numbers. They are declared using single quotes like this -

val letterChar = 'A'

val digitChar = '9'

Just like other languages, special characters in Kotlin are escaped using a
backslash. Some examples of escaped characters are -

 \n (newline), \t (tab), \r (carriage return), \b (backspace) etc.

Strings

Strings are represented using the String class. They are immutable, that means

you cannot modify a String by changing some of its elements.

You can declare a String like this -

var myStr = "Hello, Kotlin"

26

You can access the character at a particular index in a String using str[index] .

The index starts from zero -

var name = "John"

var firstCharInName = name[0] // 'J'

var lastCharInName = name[name.length - 1] // 'n'

The length property is used to get the length of a String.

Escaped String and Raw String

Strings declared in double quotes can have escaped characters like ‘\n’ (new
line), ‘\t’ (tab) etc -

var myEscapedString = "Hello Reader,\nWelcome to my Blog"

In Kotlin, you also have an option to declare raw strings. These Strings have no
escaping and can span multiple lines -

var myMultilineRawString = """

 The Quick Brown Fox

 Jumped Over a Lazy Dog.

"""

Arrays

Arrays in Kotlin are represented using the Array class. You can create an array

in Kotlin either using the library function arrayOf() or using

the Array() constructor.

27

Creating Arrays using the arrayOf library function

You can pass a bunch of values to the arrayOf function to create an array like

this -

var numbers = arrayOf(1, 2, 3, 4, 5)

var animals = arrayOf("Cat", "Dog", "Lion", "Tiger")

Note that you can also pass values of mixed types to the arrayOf() function, and

it will still work (but don’t do that) -

var mixedArray = arrayOf(1, true, 3, "Hello", 'A') // Works and creates an

array of Objects

You can also enforce a particular type while creating the array like this -

var numArray = arrayOf<Int>(1, 2, 3, 4, "Hello") // Compiler Error

Accessing the elements of an array by their index

You can access the element at a particular index in an array using array[index] .

The index starts from zero -

val myDoubleArray = arrayOf(4.0, 6.9, 1.7, 12.3, 5.4)

val firstElement = myDoubleArray[0]

val lastElement = myDoubleArray[myDoubleArray.size - 1]

Every array has a size property that you can use to get the size of the array.

You can also modify the array element at an index like this -

val a = arrayOf(4, 5, 7) // [4, 5, 7]

a[1] = 10 // [4, 10, 7]

28

Primitive Arrays

As we learned earlier, everything in Kotlin is an object. But to improve
performance it represents some of the basic types like numbers, characters and
booleans as primitive types at runtime.

The arrayOf() function creates arrays of boxed/wrapper types. That

is, arrayOf(1, 2, 3) corresponds to Java’s Integer[] array.

But, Kotlin provides a way to create arrays of primitive types as well. It contains
specialized classes for representing array of primitive types. Those classes are -

 IntArray , DoubleArray , CharArray etc. You can create an array of primitive types

using the corresponding library functions -

 intArrayOf() , doubleArrayOf() , charArrayOf() etc. -

val myCharArray = charArrayOf('K', 'O', 'T') // CharArray (corresponds to

Java 'char[]')

val myIntArray = intArrayOf(1, 3, 5, 7) // IntArray (corresponds

to Java 'int[]')

Creating Arrays using the Array() constructor

The Array() constructor takes two arguments -

1. the size of the array, and
2. a function that takes the array index as an argument and returns the element

to be inserted at that index.

var mySquareArray = Array(5, {i -> i * i}) // [0, 1, 4, 9, 16]

The second argument to the Array() constructor is a lambda expression.

Lambda expressions are anonymous functions that are declared and passed
around as expressions. We’ll learn more about lambda expressions in a future
session.

The above lambda expression takes the index of an array element and returns
the value that should be inserted at that index, which is the square of the index in
this case.

29

Type Conversions

Unlike Java, Kotlin doesn’t support implicit conversion from smaller types to
larger types. For example, Int cannot be assigned to Long or Double .

var myInt = 100

var myLong: Long = myInt // Compiler Error

However, Every number type contains helper functions that can be used to
explicitly convert one type to another.

Following helper functions are supported for type conversion between numeric
types -

 toByte()

 toShort()

 toInt()

 toLong()

 toFLoat()

 toDouble()

 toChar()

Examples of explicit type conversions

Here is how you can convert an Int to Long -

val myInt = 100

val myLong = myInt.toLong() // Explicitly converting 'Int' to 'Long'

You can also convert larger types to smaller types -

val doubleValue = 176.80

val intValue = doubleValue.toInt() // 176

Every type in Kotlin, not just numeric type, supports a helper function
called toString() to convert it to String.

30

val myInt = 1000

myInt.toString() // "1000"

You can also convert a String to a numeric type like so -

val str = "1000"

val intValue = str.toInt()

If the String-to-Number conversion is not possible then

a NumberFormatException is thrown -

val str = "1000ABC"

str.toInt() // Throws java.lang.NumberFormatException

To summarize, in this session, you learned how to declare mutable and
immutable variables. How type inference works in Kotlin. What are the basic data
types supported in Kotlin. How to work with data types

like Int , Long Double , Char , Boolean , String and Array , and how to convert one

type to another.

Session 4- Kotlin Operators with Examples

In the previous session, you learned how to create variables and what are
various basic data types available in Kotlin for creating variables.

In this session, you’ll learn what are various operators provided by Kotlin to
perform operations on basic data types.

Operations on Numeric Types

Just like other languages, Kotlin provides various operators to perform
computations on numbers -

 Arithmetic operators (+, -, *, /, %)

31

 Comparison operators (==, !=, <, >, <=, >=)

 Assignment operators (+=, -=, *=, /=, %=)

 Increment & Decrement operators (++, --)

Following are few examples that demonstrate the usage of above operators -

var a = 10

var b = 20

var c = ((a + b) * (a + b))/2 // 450

var isALessThanB = a < b // true

a++ // a now becomes 11

b += 5 // b equals to 25 now

Understanding how operators work in Kotlin

Everything in Kotlin is an object, even the basic data types

like Int, Char, Double, Boolean etc. Kotlin doesn’t have separate primitive types

and their corresponding boxed types like Java.

Note that Kotlin may represent basic types like Int, Char, Boolean etc. as

primitive values at runtime to improve performance, but for the end users, all of
them are objects.

Since all the data types are objects, the operations on these types are internally
represented as function calls.

For example, the addition operation a + b between two numbers a and b is

represented as a function call a.plus(b) -

var a = 4

var b = 5

println(a + b)

32

// equivalent to

println(a.plus(b))

All the operators that we looked at in the previous section have a symbolic name
which is used to translate any expression containing those operators into the
corresponding function calls -

Expression Translates to

a + b a.plus(b)

a - b a.minus(b)

a * b a.times(b)

a / b a.div(b)

a % b a.rem(b)

a++ a.inc()

a−− a.dec()

a > b a.compareTo(b) > 0

a < b a.compareTo(b) < 0

a += b a.plusAssign(b)

… …

You can check out other expressions and their corresponding function calls
on Kotlin’s reference page.

The concept of translating such expressions to function calls enable operator
overloading in Kotlin. For example, you can provide implementation for

https://kotlinlang.org/docs/reference/operator-overloading.html

33

the plus function in a class defined by you, and then you’ll be able to add the

objects of that class using + operator like this - object1 + object2.

Kotlin will automatically convert the addition operation object1 + object2 into

the corresponding function call object1.plus(object2) (Think of

a ComplexNumber class with the + operator overloaded).

You’ll learn more about operator overloading in a future session.

Note that the operations on basic types like Int, Char, Double, Boolean etc. are

optimized and do not include the overhead of function calls.

Bitwise Operators

Unlike C, C++ and Java, Kotlin doesn’t have bitwise operators like |(bitwise-

or), &(bitwise-and), ^(bitwise-xor), << (signed left shift), >>(signed right shift) etc.

For performing bitwise operations, Kotlin provides following methods that work

for Int and Long types -

 shl - signed shift left (equivalent of << operator)

 shr - signed shift right (equivalent of >> operator)

 ushr- unsigned shift right (equivalent of >>> operator)

 and - bitwise and (equivalent of & operator)

 or - bitwise or (equivalent of | operator)

 xor - bitwise xor (equivalent of ^ operator)

 inv - bitwise complement (equivalent of ~ operator)

Here are few examples demonstrating how to use above functions -

1 shl 2 // Equivalent to 1.shl(2), Result = 4

16 shr 2 // Result = 4

2 and 4 // Result = 0

2 or 3 // Result = 3

4 xor 5 // Result = 1

4.inv() // Result = -5

34

All the bitwise functions, except inv(), can be called using infix notation. The

infix notation of 2.and(4) is 2 and 4. Infix notation allows you to write function
calls in a more intuitive way. We will cover infix notation later on.

Operations on Boolean Types

Kotlin supports following logical operators for performing operations on boolean
types -

 || - Logical OR

 && - Logical AND

 ! - Logical NOT

Here are few examples of logical operators -

2 == 2 && 4 != 5 // true

4 > 5 && 2 < 7 // false

!(7 > 12 || 14 < 18) // false

Logical operators are generally used in control flow statements like if, if-

else, while etc., to test the validity of a condition.

Operations on Strings

String Concatenation

The + operator is overloaded for String types. It performs String concatenation -

var firstName = "Raj"

var lastName = "johnson"

var fullName = firstName + " " + lastName // "Raj johnson"

String Interpolation

https://www.callicoder.com/kotlin-control-flow/

35

Kotlin has an amazing feature called String Interpolation. This feature allows you
to directly insert a template expression inside a String. Template expressions are
tiny pieces of code that are evaluated and their results are concatenated with the
original String.

A template expression is prefixed with $ symbol. Following is an example of

String interpolation -

var a = 12

var b = 18

println("Avg of $a and $b is equal to ${ (a + b)/2 }")

// Prints - Avg of 12 and 18 is equal to 15

If the template expression is a simple variable, you can write it

like $variableName. If it is an expression then you need to insert it inside

a ${} block.

Session 5- Kotlin Control Flow: if and when

expressions, for and while loops

In this session, you’ll learn how to use Kotlin’s control flow expressions and

statements which includes conditional expressions like if, if-else, when and

looping statements like for, while, and do-while.

If Statement

The If statement allows you to specify a section of code that is executed only if

a given condition is true-

var n = 34

if(n % 2 == 0) {

 println("$n is even")

36

}

// Displays - "34 is even"

The curly braces are optional if the body of if statement contains a single line -

if(n % 2 == 0) println("$n is even")

If-Else Statement

The if-else statement executes one section of code if the condition is true and

the other if the condition is false -

var a = 32

var b = 55

if(a > b) {

 println("max($a, $b) = $a")

} else {

 println("max($a, $b) = $b")

}

// Displays - "max(32, 55) = 55"

Using If as an Expression

In Kotlin, You can use if as an expression instead of a statement. For example,

you can assign the result of an if-else expression to a variable.

37

Let’s rewrite the if-else example of finding the maximum of two numbers that

we saw in the previous section as an expression -

var a = 32

var b = 55

var max = if(a > b) a else b

println("max($a, $b) = $max")

// Displays - "max(32, 55) = 55"

Note that when you’re using if as an expression, it is required to have

an else branch, otherwise, the compiler will throw an error.

The if-else branches can also have block bodies. In case of block bodies, the

last expression is the value of the block -

var a = 32

var b = 55

var max = if(a > b) {

 println("$a is greater than $b")

 a

} else {

 println("$a is less than or equal to $b")

 b

}

println("max($a, $b) = $max")

Output

32 is less than or equal to 55

max(32, 55) = 55

38

Unlike Java, Kotlin doesn’t have a ternary operator because we can easily

achieve what ternary operator does, using an if-else expression.

If-Else-If Chain

You can chain multiple if-else-if blocks like this -

var age = 17

if(age < 12) {

 println("Child")

} else if (age in 12..17) {

 println("Teen")

} else if (age in 18..21) {

 println("Young Adult")

} else if (age in 22..30) {

 println("Adult")

} else if (age in 30..50) {

 println("Middle Aged")

} else {

 println("Old")

}

// Displays - "Teen"

In the next section, we’ll learn how to represent if-else-if chain using

a when expression to make it more concise.

When Expression

Kotlin’s when expression is the replacement of switch statement from other

languages like C, C++, and Java. It is concise and more powerful

than switch statements.

39

Here is how a when expression looks like -

var dayOfWeek = 4

when(dayOfWeek) {

 1 -> println("Monday")

 2 -> println("Tuesday")

 3 -> println("Wednesday")

 4 -> println("Thursday")

 5 -> println("Friday")

 6 -> println("Saturday")

 7 -> println("Sunday")

 else -> println("Invalid Day")

}

// Displays - "Thursday"

when expression matches the supplied argument with all the branches one by

one until a match is found. Once a match is found, it executes the matched

branch. If none of the branches match, the else branch is executed.

In the above example, all the branches contain a single statement. But they can
also contain multiple statements enclosed in a block -

var dayOfWeek = 1

when(dayOfWeek) {

 1 -> {

 // Block

 println("Monday")

 println("First day of the week")

 }

 7 -> println("Sunday")

 else -> println("Other days")

40

}

Using when as an expression

Just like if, when can be used as an expression and we can assign its result to a

variable like so -

var dayOfWeek = 4

var dayOfWeekInString = when(dayOfWeek) {

 1 -> "Monday"

 2 -> "Tuesday"

 3 -> "Wednesday"

 4 -> "Thursday"

 5 -> "Friday"

 6 -> "Saturday"

 7 -> "Sunday"

 else -> "Invalid Day"

}

println("Today is $dayOfWeekInString") // Today is Thursday

Combining multiple when branches into one using comma

You can combine multiple branches into one using comma. This is helpful when
you need to run a common logic for multiple cases -

var dayOfWeek = 6

41

when(dayOfWeek) {

 1, 2, 3, 4, 5 -> println("Weekday")

 6, 7 -> println("Weekend")

 else -> println("Invalid Day")

}

// Displays - Weekend

Checking whether a given value is in a range or not using in operator

A range is created using the .. operator. For example, you can create a range

from 1 to 10 using 1..10. You’ll learn more about range in a future session.

The in operator allows you to check if a value belongs to a range/collection -

var dayOfMonth = 5

when(dayOfMonth) {

 in 1..7 -> println("We're in the first Week of the Month")

 !in 15..21 -> println("We're not in the third week of the Month")

 else -> println("none of the above")

}

// Displays - We're in the first Week of the Month

Checking whether a given variable is of certain type or not
using is operator

var x : Any = 6.86

when(x) {

42

 is Int -> println("$x is an Int")

 is String -> println("$x is a String")

 !is Double -> println("$x is not Double")

 else -> println("none of the above")

}

// Displays - none of the above

Using when as a replacement for an if-else-if chain

var number = 20

when {

 number < 0 -> println("$number is less than zero")

 number % 2 == 0 -> println("$number is even")

 number > 100 -> println("$number is greater than 100")

 else -> println("None of the above")

}

// Displays - 20 is even

While Loop

While loop executes a block of code repeatedly as long as a given condition is
true -

while(condition) {

 // code to be executed

}

Here is an example -

43

var x = 1

while(x <= 5) {

 println("$x ")

 x++

}

// Displays - 1 2 3 4 5

In the above example, we increment the value of x by 1 in each iteration. When x
reaches 6, the condition evaluates to false and the loop terminates.

do-while loop

The do-while loop is similar to while loop except that it tests the condition at

the end of the loop.

var x = 1

do {

 print("$x ")

 x++

} while(x <= 5)

// Displays - 1 2 3 4 5

Since do-while loop tests the condition at the end of the loop. It is executed at

least once -

var x = 6

do {

 print("$x ")

 x++

44

} while(x <= 5)

// Displays - 6

For Loop

A for-loop is used to iterate through ranges, arrays, collections, or anything that
provides an iterator (You’ll learn about iterator in a future session).

Iterating through a range

for(value in 1..10) {

 print("$value ")

}

// Displays - 1 2 3 4 5 6 7 8 9 10

Iterating through an array

var primeNumbers = intArrayOf(2, 3, 5, 7, 11)

for(number in primeNumbers) {

 print("$number ")

}

// Displays - 2, 3, 5, 7, 11

Iterating through an array using its indices

Every array in Kotlin has a property called indices which returns a range of

valid indices of that array.

45

You can iterate over the indices of the array and retrieve each array element
using its index like so -

var primeNumbers = intArrayOf(2, 3, 5, 7, 11)

for(index in primeNumbers.indices) {

 println("PrimeNumber(${index+1}): ${primeNumbers[index]}")

}

Output

PrimeNumber(1): 2

PrimeNumber(2): 3

PrimeNumber(3): 5

PrimeNumber(4): 7

PrimeNumber(5): 11

Iterating through an array using withIndex()

You can use the withIndex() function on arrays to obtain an iterable

of IndexedValue type. This allows you to access both the index and the

corresponding array element in each iteration -

var primeNumbers = intArrayOf(2, 3, 5, 7, 11)

for((index, number) in primeNumbers.withIndex()) {

 println("PrimeNumber(${index+1}): $number")

}

The output of this snippet is same as the previous snippet.

Break and Continue

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-indexed-value/

46

Break out of a loop using the break keyword

for (num in 1..100) {

 if (num%3 == 0 && num%5 == 0) {

 println("First positive no divisible by both 3 and 5: ${num}")

 break

 }

}

Output

First positive no divisible by both 3 and 5: 15

Skip to the next iteration of a loop using the continue keyword

for (num in 1..10) {

 if (num%2 == 0) {

 continue;

 }

 print("${num} ")

}

Output

1 3 5 7 9

Session 6- Nullable Types and Null Safety in Kotlin

If you have been programming in Java or any other language that has the
concept of null reference then you must have heard about or

experienced NullPointerException in your programs.

NullPointerExceptions are Runtime Exceptions which are thrown by the program
at runtime causing application failure and system crashes.

47

Wouldn’t it be nice if we could detect

possible NullPointerException exception errors at compile time itself and

guard against them?

Well, Enter Kotlin!

Nullability and Nullable Types in Kotlin

Kotlin supports nullability as part of its type System. That means, you have the
ability to declare whether a variable can hold a null value or not.

By supporting nullability in the type system, the compiler can detect possible
NullPointerException errors at compile time and reduce the possibility of having
them thrown at runtime.

Let’s understand how it works!

All variables in Kotlin are non-nullable by default. So If you try to assign a null
value to a regular variable, the compiler will throw an error -

var greeting: String = "Hello, World"

greeting = null // Compilation Error

To allow null values, you have to declare a variable as nullable by appending a
question mark in its type declaration -

var nullableGreeting: String? = "Hello, World"

nullableGreeting = null // Works

We know that NullPointerException occurs when we try to call a method or

access a property on a variable which is null . Kotlin disallows method calls and

property access on nullable variables and thereby prevents many possible
NullPointerExceptions.

For example, The following method access works because Kotlin knows that the

variable greeting can never be null -

48

val len = greeting.length

val upper = greeting.toUpperCase()

But the same method call won’t work with nullableGreeting variable -

val len = nullableGreeting.length // Compilation Error

val upper = nullableGreeting.toUpperCase() // Compilation Error

Since Kotlin knows beforehand which variable can be null and which cannot, It

can detect and disallow calls which could result in NullPointerException at

compile-time itself.

Working with Nullable Types

All right, it’s nice that Kotlin disallows method calls and property access on
nullable variables to guard against NullPointerException errors. But we still need
to do that right?

Well, there are several ways of safely doing that in Kotlin.

1. Adding a null Check

The most trivial way to work with nullable variables is to perform a null check
before accessing a property or calling a method on them -

val nullableName: String? = "John"

if(nullableName != null) {

 println("Hello, ${nullableName.toUpperCase()}.")

 println("Your name is ${nullableName.length} characters long.")

} else {

 println("Hello, Guest")

49

}

Once you perform a null comparison, the compiler remembers that and allows

calls to toUpperCase() and length inside the if branch.

2. Safe call operator: ?.

Null Comparisons are simple but too verbose. Kotlin provides a Safe call

operator, ?. that reduces this verbosity. It allows you to combine a null-check

and a method call in a single expression.

For example, The following expression -

nullableName?.toUpperCase()

is same as -

if(nullableName != null)

 nullableName.toUpperCase()

else

 null

Wow! That saves a lot of keystrokes, right? :-)

So if you were to print the name in uppercase and its length safely, you could do
the following -

val nullableName: String? = null

println(nullableName?.toUpperCase())

println(nullableName?.length)

// Prints

null

50

null

That printed null since the variable nullableName is null, otherwise, it would

have printed the name in uppercase and its length.

But what if you don’t want to print anything if the variable is null?

Well, To perform an operation only if the variable is not null, you can use
the safe call operator with let -

val nullableName: String? = null

nullableName?.let { println(it.toUpperCase()) }

nullableName?.let { println(it.length) }

// Prints nothing

The lambda expression inside let is executed only if the

variable nullableName is not null.

That’s great but that’s not all. Safe call operator is even more powerful than you
think. For example, You can chain multiple safe calls like this -

val currentCity: String? = user?.address?.city

The variable currentCity will be null if any of user , address or city is null.

(Imagine doing that using null-checks.)

3. Elvis operator: ?:

The Elvis operator is used to provide a default value when the original variable

is null -

51

val name = nullableName ?: "Guest"

The above expression is same as -

val name = if(nullableName != null) nullableName else "Guest"

In other words, The Elvis operator takes two values and returns the first value if it
is not null, otherwise, it returns the second value.

The Elvis operator is often used with Safe call operator to provide a default value

other than null when the variable on which a method or property is called

is null -

val len = nullableName?.length ?: -1

You can have more complex expressions on the left side of Elvis operator -

val currentCity = user?.address?.city ?: "Unknown"

Moreover, you can use throw and return expressions on the right side of Elvis

operator. This is very useful while checking preconditions in a function. So
instead of providing a default value in the right side of Elvis operator, you can
throw an exception like this -

val name = nullableName ?: throw IllegalArgumentException("Name can not be

null")

4. Not null assertion : !! Operator

The !! operator converts a nullable type to a non-null type, and throws

a NullPointerException if the nullable type holds a null value .

So it’s a way of asking for NullPointerException explicitly. Please don’t use

this operator.

52

val nullableName: String? = null

nullableName!!.toUpperCase() // Results in NullPointerException

Null Safety and Java Interoperability

Kotlin is fully interoperable with Java but Java doesn’t support nullability in its
type system. So what happens when you call Java code from Kotlin?

Well, Java types are treated specially in Kotlin. They are called Platform types.
Since Kotlin doesn’t have any information about the nullability of a type declared
in Java, It relaxes compile-time null checks for these types.

So you don’t get any null safety guarantee for types declared in Java, and you
have full responsibility for operations you perform on these types. The compiler
will allow all operations. If you know that the Java variable can be null, you
should compare it with null before use, otherwise, just like Java, you’ll get a
NullPointerException at runtime if the value is null.

Consider the following User class declared in Java -

public class User {

 private final String name;

 public User(String name) {

 this.name = name;

 }

 public String getName() {

 return name;

 }

}

53

Since Kotlin doesn’t know about the nullability of the member variable name , It

allows all operations on this variable. You can treat it as nullable or non-nullable,
but the compiler won’t enforce anything.

In the following example, we simply treat the variable name as non-nullable and

call methods and properties on it -

val javaUser = User(null)

println(javaUser.name.toUpperCase()) // Allowed (Throws NullPointerException)

println(javaUser.name.length) // Allowed (Throws NullPointerException)

The other option is to treat the member variable name as nullable and use the

safe operator for calling methods or accessing properties -

val javaUser = User(null)

println(javaUser.name?.toUpperCase()) // Allowed (Prints null)

println(javaUser.name?.length) // Allowed (Prints null)

Nullability Annotations

Although Java doesn’t support nullability in its type system, You can use

annotations like @Nullable and @NotNull provided by external packages

like javax.validation.constraints , org.jetbrains.annotations etc to

mark a variable as Nullable or Not-null.

Java compiler doesn’t use these annotations, but these annotations are used by
IDEs, ORM libraries and other external tools to provide assistance while working
with null values.

Kotlin also respects these annotations when they are present in Java code. Java
types which have these nullability annotations are represented as actual nullable
or non-null Kotlin types instead of platform types.

54

Nullability and Collections

Kotlin’s collection API is built on top of Java’s collection API but it fully supports
nullability on Collections.

Just as regular variables are non-null by default, a normal collection also can’t
hold null values -

val regularList: List<Int> = listOf(1, 2, null, 3) // Compiler Error

1. Collection of Nullable Types

Here is how you can declare a Collection of Nullable Types in Kotlin -

val listOfNullableTypes: List<Int?> = listOf(1, 2, null, 3) // Works

To filter non-null values from a list of nullable types, you can use

the filterNotNull() function -

val notNullList: List<Int> = listOfNullableTypes.filterNotNull()

2. Nullable Collection

Note that there is a difference between a collection of nullable types and a
nullable collection.

A collection of nullable types can hold null values but the collection itself cannot
be null -

var listOfNullableTypes: List<Int?> = listOf(1, 2, null, 3) // Works

listOfNullableTypes = null // Compilation Error

You can declare a nullable collection like this -

var nullableList: List<Int>? = listOf(1, 2, 3)

55

nullableList = null // Works

3. Nullable Collection of Nullable Types

Finally, you can declare a nullable collection of nullable types like this -

var nullableListOfNullableTypes: List<Int?>? = listOf(1, 2, null, 3) // Works

nullableListOfNullableTypes = null // Works

Session 7- Kotlin Functions, Default and Named

Arguments, Varargs and Function Scopes

Functions are the basic building block of any program. In this session, you’ll learn
how to declare and call functions in Kotlin. You’ll also learn about Function
scopes, Default arguments, Named Arguments, and Varargs.

Defining and Calling Functions

You can declare a function in Kotlin using the fun keyword. Following is a simple
function that calculates the average of two numbers -

fun avg(a: Double, b: Double): Double {

 return (a + b)/2

}

Calling a function is simple. You just need to pass the required number of
parameters in the function name like this -

avg(4.6, 9.0) // 6.8

56

Following is the general syntax of declaring a function in Kotlin.

fun functionName(param1: Type1, param2: Type2,..., paramN: TypeN): Type {

 // Method Body

}

Every function declaration has a function name, a list of comma-separated
parameters, an optional return type, and a method body. The function
parameters must be explicitly typed.

Single Expression Functions

You can omit the return type and the curly braces if the function returns a single
expression. The return type is inferred by the compiler from the expression -

fun avg(a: Double, b: Double) = (a + b)/2

avg(10.0, 20.0) // 15.0

Note that, unlike other statically typed languages like Scala, Kotlin does not infer
return types for functions with block bodies. Therefore, functions with block body
must always specify return types explicitly.

Unit returning Functions

Functions which don’t return anything has a return type of Unit. The Unit type

corresponds to void in Java.

fun printAverage(a: Double, b: Double): Unit {

 println("Avg of ($a, $b) = ${(a + b)/2}")

}

printAverage(10.0, 30.0) // Avg of (10.0, 30.0) = 20.0

Note that, the Unit type declaration is completely optional. So you can also write
the above function declaration like this -

57

fun printAverage(a: Double, b: Double) {

 println("Avg of ($a, $b) = ${(a + b)/2}")

}

Function Default Arguments

Kotlin supports default arguments in function declarations. You can specify a
default value for a function parameter. The default value is used when the
corresponding argument is omitted from the function call.

Consider the following function for example -

fun displayGreeting(message: String, name: String = "Guest") {

 println("Hello $name, $message")

}

If you call the above function with two arguments, it works just like any other
function and uses the values passed in the arguments -

displayGreeting("Welcome to the CalliCoder Blog", "John") // Hello John,

Welcome to the CalliCoder Blog

However, If you omit the argument that has a default value from the function call,
then the default value is used in the function body -

displayGreeting("Welcome to the Coding Bootcamps School") // Hello Guest,

Welcome to the Coding Bootcamps School

If the function declaration has a default parameter preceding a non-default
parameter, then the default value cannot be used while calling the function with
position-based arguments.

Consider the following function -

58

fun arithmeticSeriesSum(a: Int = 1, n: Int, d: Int = 1): Int {

 return n/2 * (2*a + (n-1)*d)

}

While calling the above function, you can not omit the argument a from the

function call and selectively pass a value for the non-default parameter n -

arithmeticSeriesSum(10) // error: no value passed for parameter n

When you call a function with position-based arguments, the first argument
corresponds to the first parameter, the second argument corresponds to the
second parameter, and so on.

So for passing a value for the 2nd parameter, you need to specify a value for the
first parameter as well -

arithmeticSeriesSum(1, 10) // Result = 55

However, the above use-case of selectively passing a value for a parameter is
solved by another feature of Kotlin called Named Arguments.

Function Named Arguments

Kotlin allows you to specify the names of arguments that you’re passing to the
function. This makes the function calls more readable. It also allows you to pass
the value of a parameter selectively if other parameters have default values.

Consider the following arithmeticSeriesSum() function that we defined in the
previous section -

59

fun arithmeticSeriesSum(a: Int = 1, n: Int, d: Int = 1): Int {

 return n/2 * (2*a + (n-1)*d)

}

You can specify the names of arguments while calling the function like this -

arithmeticSeriesSum(n=10) // Result = 55

The above function call will use the default values for parameters a and d.

Similarly, you can call the function with all the parameters like this -

arithmeticSeriesSum(a=3, n=10, d=2) // Result = 120

You can also reorder the arguments if you’re specifying the names -

arithmeticSeriesSum(n=10, d=2, a=3) // Result = 120

You can use a mix of named arguments and position-based arguments as long
as all the position-based arguments are placed before the named arguments -

arithmeticSeriesSum(3, n=10) // Result = 75

The following function call is not allowed since it contains position-based
arguments after named arguments -

arithmeticSeriesSum(n=10, 2) // error: mixing named and positioned arguments

is not allowed

Variable Number of Arguments (Varargs)

60

You can pass a variable number of arguments to a function by declaring the

function with a vararg parameter.

Consider the following sumOfNumbers() function which accepts a vararg of
numbers -

fun sumOfNumbers(vararg numbers: Double): Double {

 var sum: Double = 0.0

 for(number in numbers) {

 sum += number

 }

 return sum

}

You can call the above function with any number of arguments -

sumOfNumbers(1.5, 2.0) // Result = 3.5

sumOfNumbers(1.5, 2.0, 3.5, 4.0, 5.8, 6.2) // Result = 23.0

sumOfNumbers(1.5, 2.0, 3.5, 4.0, 5.8, 6.2, 8.1, 12.4, 16.5) // Result = 60.0

In Kotlin, a vararg parameter of type T is internally represented as an array of

type T (Array<T>) inside the function body.

A function may have only one vararg parameter. If there are other parameters

following the vararg parameter, then the values for those parameters can be
passed using the named argument syntax -

fun sumOfNumbers(vararg numbers: Double, initialSum: Double): Double {

 var sum = initialSum

 for(number in numbers) {

 sum += number

61

 }

 return sum

}

sumOfNumbers(1.5, 2.5, initialSum=100.0) // Result = 104.0

Spread Operator

Usually, we pass the arguments to a vararg function one-by-one. But if you
already have an array and want to pass the elements of the array to
the vararg function, then you can use the spread operator like this -

val a = doubleArrayOf(1.5, 2.6, 5.4)

sumOfNumbers(*a) // Result = 9.5

Function Scope

Kotlin supports functional programming. Functions are first-class citizens in the
language.

Unlike Java where every function needs to be encapsulated inside a class, Kotlin
functions can be defined at the top level in a source file.

In addition to top-level functions, you also have the ability to define member
functions, local functions, and extension functions.

1. Top Level Functions

62

Top level functions in Kotlin are defined in a source file outside of any class.
They are also called package level functions because they are a member of the
package in which they are defined.

The main() method itself is a top-level function in Kotlin since it is defined outside
of any class.

Let’s now see an example of a top-level function. Check out the

following findNthFibonacciNo() function which is defined inside a package
named maths -

package maths

fun findNthFibonacciNo(n: Int): Int {

 var a = 0

 var b = 1

 var c: Int

 if(n == 0) {

 return a

 }

 for(i in 2..n) {

 c = a+b

 a = b

 b = c

 }

 return b

}

You can access the above function directly inside the maths package -

package maths

63

fun main(args: Array<String>) {

 println("10th fibonacci number is - ${findNthFibonacciNo(10)}")

}

//Outputs - 10th fibonacci number is - 55

However, If you want to call the findNthFibonacciNo() function from other
packages, then you need to import it as in the following example -

package test

import maths.findNthFibonacciNo

fun main(args: Array<String>) {

 println("10th fibonacci number is - ${findNthFibonacciNo(10)}")

}

2. Member Functions

Member functions are functions which are defined inside a class or an object.

class User(val firstName: String, val lastName: String) {

 // Member function

 fun getFullName(): String {

 return firstName + " " + lastName

 }

}

Member functions are called on the objects of the class using the dot(.) notation -

64

val user = User("Bill", "Gates") // Create an object of the class

println("Display Name : ${user.getFullName()}") // Call the member function

3. Local/Nested Functions

Kotlin allows you to nest function definitions. These nested functions are called
Local functions. Local functions bring more encapsulation and readability to your
program -

fun findBodyMassIndex(weightInKg: Double, heightInCm: Double): Double {

 // Validate the arguments

 if(weightInKg <= 0) {

 throw IllegalArgumentException("Weight must be greater than zero")

 }

 if(heightInCm <= 0) {

 throw IllegalArgumentException("Height must be greater than zero")

 }

 fun calculateBMI(weightInKg: Double, heightInCm: Double): Double {

 val heightInMeter = heightInCm / 100

 return weightInKg / (heightInMeter * heightInMeter)

 }

 // Calculate BMI using the nested function

 return calculateBMI(weightInKg, heightInCm)

}

Local functions can access local variables of the outer function. So the above
function is equivalent to the following -

65

fun findBodyMassIndex(weightInKg: Double, heightInCm: Double): Double {

 if(weightInKg <= 0) {

 throw IllegalArgumentException("Weight must be greater than zero")

 }

 if(heightInCm <= 0) {

 throw IllegalArgumentException("Height must be greater than zero")

 }

 // Nested function has access to the local variables of the outer

function

 fun calculateBMI(): Double {

 val heightInMeter = heightInCm / 100

 return weightInKg / (heightInMeter * heightInMeter)

 }

 return calculateBMI()

}

Session 8- Kotlin Infix Notation - Make function calls

more intuitive

Kotlin supports method calls of a special kind, called infix calls.
You can mark any member function or extension function with the infix modifier
to allow it to be called using infix notation. The only requirement is that the
function should have only one required parameter.

Infix notations are used extensively in Kotlin. If you’ve been programming in
Kotlin, chances are that you’ve already used infix notations.

66

Following are few common examples of infix notations in Kotlin -

1. Infix Notation Example - Creating a Map

val map = mapOf(1 to "one", 2 to "two", 3 to "three")

In the above example, the expressions 1 to "one", 2 to "two" etc, are infix

notations of the function calls 1.to("one") and 2.to("two") etc.

to() is an infix function that creates a Pair<A, B> from two values.

2. Infix Notation Example - Range Operators (until, downTo, step)

Kotlin provides various range operators that are usually called using infix notation
-

for(i in 1 until 10) { // Same as - for(i in 1.until(10))

 print("$i ")

}

for(i in 10 downTo 1) { // Same as - for(i in 10.downTo(1))

 print("$i ")

}

for(i in 1 until 10 step 2) { // Same as - for(i in 1.until(10).step(2))

 print("$i ")

}

3. Infix Notation Example - String.matches()

The String.matches() function in Kotlin which matches a String with

a Regex is an infix function -

val regex = Regex("[tT]rue|[yY]es")

val str = "yes"

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/to.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-pair/index.html

67

str.matches(regex)

// Infix notation of the above function call -

str matches regex

Creating an Infix Function

You can make a single argument member function or extension function, an infix

function by marking it with the infix keyword.

Check out the following example where I have created an infix member function

called add() for adding two Complex numbers -

data class ComplexNumber(val realPart: Double, val imaginaryPart: Double) {

 // Infix function for adding two complex numbers

 infix fun add(c: ComplexNumber): ComplexNumber {

 return ComplexNumber(realPart + c.realPart, imaginaryPart +

c.imaginaryPart)

 }

}

You can now call the add() method using infix notation -

val c1 = ComplexNumber(3.0, 5.0)

val c2 = ComplexNumber(4.0, 7.0)

// Usual call

c1.add(c2) // produces - ComplexNumber(realPart=7.0, imaginaryPart=12.0)

68

// Infix call

c1 add c2 // produces - ComplexNumber(realPart=7.0, imaginaryPart=12.0)

