
1

Python Object Oriented Programming

(OOP) By Examples

By coding-bootcamps.com

1. What Is Object-Oriented Programming in Python?

2. Define a Class in Python

a. Classes vs Instances

b. How to Define a Class

3. Instantiate an Object in Python

a. Class and Instance Attributes

b. Instance Methods

c. Check Your Understanding

4. Inherit From Other Classes in Python

a. Dog Park Example

b. Parent Classes vs Child Classes

c. Extend the Functionality of a Parent Class

d. Check Your Understanding

5. Conclusion

2

1. What Is Object-Oriented Programming in Python?

Object-oriented programming is a programming paradigm that provides a means of structuring

programs so that properties and behaviors are bundled into individual objects.

For instance, an object could represent a person with properties like a name, age, and address

and behaviors such as walking, talking, breathing, and running. Or it could represent an email

with properties like a recipient list, subject, and body and behaviors like adding attachments and

sending.

Put another way, object-oriented programming is an approach for modeling concrete, real-world

things, like cars, as well as relations between things, like companies and employees, students

and teachers, and so on. OOP models real-world entities as software objects that have some

data associated with them and can perform certain functions.

Another common programming paradigm is procedural programming, which structures a

program like a recipe in that it provides a set of steps, in the form of functions and code blocks,

that flow sequentially in order to complete a task.

The key takeaway is that objects are at the center of object-oriented programming in Python,

not only representing the data, as in procedural programming, but in the overall structure of the

program as well.

2. Define a Class in Python

Primitive data structures—like numbers, strings, and lists—are designed to represent simple

pieces of information, such as the cost of an apple, the name of a poem, or your favorite colors,

respectively. What if you want to represent something more complex?

For example, let’s say you want to track employees in an organization. You need to store some

basic information about each employee, such as their name, age, position, and the year they

started working.

One way to do this is to represent each employee as a list:

kirk = ["James Kirk", 34, "Captain", 2265]

spock = ["Spock", 35, "Science Officer", 2254]

mccoy = ["Leonard McCoy", "Chief Medical Officer", 2266]

There are a number of issues with this approach.

3

First, it can make larger code files more difficult to manage. If you reference kirk[0] several lines

away from where the kirk list is declared, will you remember that the element with index 0 is the

employee’s name?

Second, it can introduce errors if not every employee has the same number of elements in the

list. In the mccoy list above, the age is missing, so mccoy[1] will return "Chief Medical Officer"

instead of Dr. McCoy’s age.

A great way to make this type of code more manageable and more maintainable is to use

classes.

2.a. Classes vs Instances

Classes are used to create user-defined data structures. Classes define functions called

methods, which identify the behaviors and actions that an object created from the class can

perform with its data.

In this project, you’ll create a Dog class that stores some information about the characteristics

and behaviors that an individual dog can have.

A class is a blueprint for how something should be defined. It doesn’t actually contain any data.

The Dog class specifies that a name and an age are necessary for defining a dog, but it doesn’t

contain the name or age of any specific dog.

While the class is the blueprint, an instance is an object that is built from a class and contains

real data. An instance of the Dog class is not a blueprint anymore. It’s an actual dog with a

name, like Miles, who’s four years old.

Put another way, a class is like a form or questionnaire. An instance is like a form that has been

filled out with information. Just like many people can fill out the same form with their own unique

information, many instances can be created from a single class.

2.b. How to Define a Class

All class definitions start with the class keyword, which is followed by the name of the class and

a colon. Any code that is indented below the class definition is considered part of the class’s

body.

Here’s an example of a Dog class:

class Dog:

4

 pass

The body of the Dog class consists of a single statement: the pass keyword. pass is often used

as a placeholder indicating where code will eventually go. It allows you to run this code without

Python throwing an error.

Note: Python class names are written in CapitalizedWords notation by convention. For example,

a class for a specific breed of dog like the Jack Russell Terrier would be written as

JackRussellTerrier.

The Dog class isn’t very interesting right now, so let’s spruce it up a bit by defining some

properties that all Dog objects should have. There are a number of properties that we can

choose from, including name, age, coat color, and breed. To keep things simple, we’ll just use

name and age.

The properties that all Dog objects must have are defined in a method called .__init__(). Every

time a new Dog object is created, .__init__() sets the initial state of the object by assigning the

values of the object’s properties. That is, .__init__() initializes each new instance of the class.

You can give .__init__() any number of parameters, but the first parameter will always be a

variable called self. When a new class instance is created, the instance is automatically passed

to the self parameter in .__init__() so that new attributes can be defined on the object.

Let’s update the Dog class with an .__init__() method that creates .name and .age attributes:

class Dog:

 def __init__(self, name, age):

 self.name = name

 self.age = age

Notice that the .__init__() method’s signature is indented four spaces. The body of the method

is indented by eight spaces. This indentation is vitally important. It tells Python that the

.__init__() method belongs to the Dog class.

In the body of .__init__(), there are two statements using the self variable:

1. self.name = name creates an attribute called name and assigns to it the value of the

name parameter.

2. self.age = age creates an attribute called age and assigns to it the value of the age

parameter.

5

Attributes created in .__init__() are called instance attributes. An instance attribute’s value is

specific to a particular instance of the class. All Dog objects have a name and an age, but the

values for the name and age attributes will vary depending on the Dog instance.

On the other hand, class attributes are attributes that have the same value for all class

instances. You can define a class attribute by assigning a value to a variable name outside of

.__init__().

For example, the following Dog class has a class attribute called species with the value "Canis

familiaris":

class Dog:

 # Class attribute

 species = "Canis familiaris"

 def __init__(self, name, age):

 self.name = name

 self.age = age

Class attributes are defined directly beneath the first line of the class name and are indented by

four spaces. They must always be assigned an initial value. When an instance of the class is

created, class attributes are automatically created and assigned to their initial values.

Use class attributes to define properties that should have the same value for every class

instance. Use instance attributes for properties that vary from one instance to another.

Now that we have a Dog class, let’s create some dogs!

3. Instantiate an Object in Python

Open IDLE’s interactive window and type the following:

>>>

>>> class Dog:

... pass

This creates a new Dog class with no attributes or methods.

Creating a new object from a class is called instantiating an object. You can instantiate a new

Dog object by typing the name of the class, followed by opening and closing parentheses:

6

>>>

>>> Dog()

<__main__.Dog object at 0x106702d30>

You now have a new Dog object at 0x106702d30. This funny-looking string of letters and

numbers is a memory address that indicates where the Dog object is stored in your computer’s

memory. Note that the address you see on your screen will be different.

Now instantiate a second Dog object:

>>>

>>> Dog()

<__main__.Dog object at 0x0004ccc90>

The new Dog instance is located at a different memory address. That’s because it’s an entirely

new instance and is completely unique from the first Dog object that you instantiated.

To see this another way, type the following:

>>>

>>> a = Dog()

>>> b = Dog()

>>> a == b

False

In this code, you create two new Dog objects and assign them to the variables a and b. When

you compare a and b using the == operator, the result is False. Even though a and b are both

instances of the Dog class, they represent two distinct objects in memory.

3.a. Class and Instance Attributes

Now create a new Dog class with a class attribute called .species and two instance attributes

called .name and .age:

>>>

>>> class Dog:

... species = "Canis familiaris"

... def __init__(self, name, age):

... self.name = name

... self.age = age

7

To instantiate objects of this Dog class, you need to provide values for the name and age. If you

don’t, then Python raises a TypeError:

>>>

>>> Dog()

Traceback (most recent call last):

 File "<pyshell#6>", line 1, in <module>

 Dog()

TypeError: __init__() missing 2 required positional arguments: 'name' and

'age'

To pass arguments to the name and age parameters, put values into the parentheses after the

class name:

>>>

>>> buddy = Dog("Buddy", 9)

>>> miles = Dog("Miles", 4)

This creates two new Dog instances—one for a nine-year-old dog named Buddy and one for a

four-year-old dog named Miles.

The Dog class’s .__init__() method has three parameters, so why are only two arguments

passed to it in the example?

When you instantiate a Dog object, Python creates a new instance and passes it to the first

parameter of .__init__(). This essentially removes the self parameter, so you only need to worry

about the name and age parameters.

After you create the Dog instances, you can access their instance attributes using dot notation:

>>>

>>> buddy.name

'Buddy'

>>> buddy.age

9

>>> miles.name

'Miles'

>>> miles.age

4

8

You can access class attributes the same way:

>>>

>>> buddy.species

'Canis familiaris'

One of the biggest advantages of using classes to organize data is that instances are

guaranteed to have the attributes you expect. All Dog instances have .species, .name, and .age

attributes, so you can use those attributes with confidence knowing that they will always return a

value.

Although the attributes are guaranteed to exist, their values can be changed dynamically:

>>>

>>> buddy.age = 10

>>> buddy.age

10

>>> miles.species = "Felis silvestris"

>>> miles.species

'Felis silvestris'

In this example, you change the .age attribute of the buddy object to 10. Then you change the

species attribute of the miles object to "Felis silvestris", which is a species of cat. That makes

Miles a pretty strange dog, but it is valid Python!

The key takeaway here is that custom objects are mutable by default. An object is mutable if it

can be altered dynamically. For example, lists and dictionaries are mutable, but strings and

tuples are immutable.

3.b. Instance Methods

Instance methods are functions that are defined inside a class and can only be called from an

instance of that class. Just like .__init__(), an instance method’s first parameter is always self.

Open a new editor window in IDLE and type in the following Dog class:

class Dog:

9

 species = "Canis familiaris"

 def __init__(self, name, age):

 self.name = name

 self.age = age

 # Instance method

 def description(self):

 return f"{self.name} is {self.age} years old"

 # Another instance method

 def speak(self, sound):

 return f"{self.name} says {sound}"

This Dog class has two instance methods:

1. .description() returns a string displaying the name and age of the dog.

2. .speak() has one parameter called sound and returns a string containing the dog’s name

and the sound the dog makes.

Save the modified Dog class to a file called dog.py and press F5 to run the program. Then open

the interactive window and type the following to see your instance methods in action:

>>>

>>> miles = Dog("Miles", 4)

>>> miles.description()

'Miles is 4 years old'

>>> miles.speak("Woof Woof")

'Miles says Woof Woof'

>>> miles.speak("Bow Wow")

'Miles says Bow Wow'

In the above Dog class, .description() returns a string containing information about the Dog

instance miles. When writing your own classes, it’s a good idea to have a method that returns a

string containing useful information about an instance of the class. However, .description() isn’t

the most Pythonic way of doing this.

When you create a list object, you can use print() to display a string that looks like the list:

10

>>>

>>> names = ["Fletcher", "David", "Dan"]

>>> print(names)

['Fletcher', 'David', 'Dan']

Let’s see what happens when you print() the miles object:

>>>

>>> print(miles)

<__main__.Dog object at 0x00aeff70>

When you print(miles), you get a cryptic looking message telling you that miles is a Dog object

at the memory address 0x00aeff70. This message isn’t very helpful. You can change what gets

printed by defining a special instance method called .__str__().

In the editor window, change the name of the Dog class’s .description() method to .__str__():

class Dog:

 # Leave other parts of Dog class as-is

 # Replace .description() with __str__()

 def __str__(self):

 return f"{self.name} is {self.age} years old"

Save the file and press F5. Now, when you print(miles), you get a much friendlier output:

>>>

>>> miles = Dog("Miles", 4)

>>> print(miles)

'Miles is 4 years old'

Methods like .__init__() and .__str__() are called dunder methods because they begin and end

with double underscores. There are many dunder methods that you can use to customize

classes in Python. Although it is too advanced a topic for Python beginners, understanding

dunder methods is an important part of mastering object-oriented programming in Python.

In the next section, you’ll see how to take your knowledge one step further and create classes

from other classes.

3.c. Check Your Understanding

11

Problem: Create a Car class with two instance attributes:

1. .color, which stores the name of the car’s color as a string

2. .mileage, which stores the number of miles on the car as an integer

Then instantiate two Car objects—a blue car with 20,000 miles and a red car with 30,000

miles—and print out their colors and mileage. Your output should look like this:

The blue car has 20,000 miles.

The red car has 30,000 miles.

Solution:

First, create a Car class with .color and .mileage instance attributes:

class Car:

 def __init__(self, color, mileage):

 self.color = color

 self.mileage = mileage

The color and mileage parameters of .__init__() are assigned to self.color and self.mileage,

which creates the two instance attributes.

Now you can create the two Car instances:

blue_car = Car(color="blue", mileage=20_000)

red_car = Car(color="red", mileage=30_000)

The blue_car instance is created by passing the value "blue" to the color parameter and 20_000

to the mileage parameter. Similarly, red_car is created with the values "red" and 30_000.

To print the color and mileage of each Car object, you can loop over a tuple containing both

objects:

for car in (blue_car, red_car):

 print(f"The {car.color} car has {car.mileage:,} miles")

12

The f-string in the above for loop inserts the .color and .mileage attributes into the string and

uses the :, format specifier to print the mileage grouped by thousands and separated with a

comma.

The final output looks like this:

The blue car has 20,000 miles.

The red car has 30,000 miles.

4. Inherit From Other Classes in Python

Inheritance is the process by which one class takes on the attributes and methods of another.

Newly formed classes are called child classes, and the classes that child classes are derived

from are called parent classes.

Child classes can override or extend the attributes and methods of parent classes. In other

words, child classes inherit all of the parent’s attributes and methods but can also specify

attributes and methods that are unique to themselves.

Although the analogy isn’t perfect, you can think of object inheritance sort of like genetic

inheritance.

You may have inherited your hair color from your mother. It’s an attribute you were born with.

Let’s say you decide to color your hair purple. Assuming your mother doesn’t have purple hair,

you’ve just overridden the hair color attribute that you inherited from your mom.

You also inherit, in a sense, your language from your parents. If your parents speak English,

then you’ll also speak English. Now imagine you decide to learn a second language, like

German. In this case you’ve extended your attributes because you’ve added an attribute that

your parents don’t have.

4.a. Dog Park Example

Pretend for a moment that you’re at a dog park. There are many dogs of different breeds at the

park, all engaging in various dog behaviors.

Suppose now that you want to model the dog park with Python classes. The Dog class that you

wrote in the previous section can distinguish dogs by name and age but not by breed.

You could modify the Dog class in the editor window by adding a .breed attribute:

13

class Dog:

 species = "Canis familiaris"

 def __init__(self, name, age, breed):

 self.name = name

 self.age = age

 self.breed = breed

The instance methods defined earlier are omitted here because they aren’t important for this

discussion.

Press F5 to save the file. Now you can model the dog park by instantiating a bunch of different

dogs in the interactive window:

>>>

>>> miles = Dog("Miles", 4, "Jack Russell Terrier")

>>> buddy = Dog("Buddy", 9, "Dachshund")

>>> jack = Dog("Jack", 3, "Bulldog")

>>> jim = Dog("Jim", 5, "Bulldog")

Each breed of dog has slightly different behaviors. For example, bulldogs have a low bark that

sounds like woof, but dachshunds have a higher-pitched bark that sounds more like yap.

Using just the Dog class, you must supply a string for the sound argument of .speak() every

time you call it on a Dog instance:

>>>

>>> buddy.speak("Yap")

'Buddy says Yap'

>>> jim.speak("Woof")

'Jim says Woof'

>>> jack.speak("Woof")

'Jack says Woof'

Passing a string to every call to .speak() is repetitive and inconvenient. Moreover, the string

representing the sound that each Dog instance makes should be determined by its .breed

attribute, but here you have to manually pass the correct string to .speak() every time it’s called.

14

You can simplify the experience of working with the Dog class by creating a child class for each

breed of dog. This allows you to extend the functionality that each child class inherits, including

specifying a default argument for .speak().

4.b. Parent Classes vs Child Classes

Let’s create a child class for each of the three breeds mentioned above: Jack Russell Terrier,

Dachshund, and Bulldog.

For reference, here’s the full definition of the Dog class:

class Dog:

 species = "Canis familiaris"

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def __str__(self):

 return f"{self.name} is {self.age} years old"

 def speak(self, sound):

 return f"{self.name} says {sound}"

Remember, to create a child class, you create a new class with its own name and then put the

name of the parent class in parentheses. Add the following to the dog.py file to create three new

child classes of the Dog class:

class JackRussellTerrier(Dog):

 pass

class Dachshund(Dog):

 pass

class Bulldog(Dog):

 pass

Press F5 to save and run the file. With the child classes defined, you can now instantiate some

dogs of specific breeds in the interactive window:

>>>

15

>>> miles = JackRussellTerrier("Miles", 4)

>>> buddy = Dachshund("Buddy", 9)

>>> jack = Bulldog("Jack", 3)

>>> jim = Bulldog("Jim", 5)

Instances of child classes inherit all of the attributes and methods of the parent class:

>>>

>>> miles.species

'Canis familiaris'

>>> buddy.name

'Buddy'

>>> print(jack)

Jack is 3 years old

>>> jim.speak("Woof")

'Jim says Woof'

To determine which class a given object belongs to, you can use the built-in type():

>>>

>>> type(miles)

<class '__main__.JackRussellTerrier'>

What if you want to determine if miles is also an instance of the Dog class? You can do this with

the built-in isinstance():

>>>

>>> isinstance(miles, Dog)

True

Notice that isinstance() takes two arguments, an object and a class. In the example above,

isinstance() checks if miles is an instance of the Dog class and returns True.

The miles, buddy, jack, and jim objects are all Dog instances, but miles is not a Bulldog

instance, and jack is not a Dachshund instance:

16

>>>

>>> isinstance(miles, Bulldog)

False

>>> isinstance(jack, Dachshund)

False

More generally, all objects created from a child class are instances of the parent class, although

they may not be instances of other child classes.

Now that you’ve created child classes for some different breeds of dogs, let’s give each breed

its own sound.

4.c. Extend the Functionality of a Parent Class

Since different breeds of dogs have slightly different barks, you want to provide a default value

for the sound argument of their respective .speak() methods. To do this, you need to override

.speak() in the class definition for each breed.

To override a method defined on the parent class, you define a method with the same name on

the child class. Here’s what that looks like for the JackRussellTerrier class:

class JackRussellTerrier(Dog):

 def speak(self, sound="Arf"):

 return f"{self.name} says {sound}"

Now speak() is defined on the JackRussellTerrier class with the default argument for sound set

to "Arf".

Update dog.py with the new JackRussellTerrier class and press F5 to save and run the file. You

can now call .speak() on a JackRussellTerrier instance without passing an argument to sound:

>>>

>>> miles = JackRussellTerrier("Miles", 4)

>>> miles.speak()

'Miles says Arf'

Sometimes dogs make different barks, so if Miles gets angry and growls, you can still call

.speak() with a different sound:

17

>>>

>>> miles.speak("Grrr")

'Miles says Grrr'

One thing to keep in mind about class inheritance is that changes to the parent class

automatically propagate to child classes. This occurs as long as the attribute or method being

changed isn’t overridden in the child class.

For example, in the editor window, change the string returned by .speak() in the Dog class:

class Dog:

 # Leave other attributes and methods as they are

 # Change the string returned by .speak()

 def speak(self, sound):

 return f"{self.name} barks: {sound}"

Save the file and press F5. Now, when you create a new Bulldog instance named jim,

jim.speak() returns the new string:

>>>

>>> jim = Bulldog("Jim", 5)

>>> jim.speak("Woof")

'Jim barks: Woof'

However, calling .speak() on a JackRussellTerrier instance won’t show the new style of output:

>>>

>>> miles = JackRussellTerrier("Miles", 4)

>>> miles.speak()

'Miles says Arf'

Sometimes it makes sense to completely override a method from a parent class. But in this

instance, we don’t want the JackRussellTerrier class to lose any changes that might be made to

the formatting of the output string of Dog.speak().

To do this, you still need to define a .speak() method on the child JackRussellTerrier class. But

instead of explicitly defining the output string, you need to call the Dog class’s .speak() inside of

the child class’s .speak() using the same arguments that you passed to

JackRussellTerrier.speak().

18

You can access the parent class from inside a method of a child class by using super():

class JackRussellTerrier(Dog):

 def speak(self, sound="Arf"):

 return super().speak(sound)

When you call super().speak(sound) inside JackRussellTerrier, Python searches the parent

class, Dog, for a .speak() method and calls it with the variable sound.

Update dog.py with the new JackRussellTerrier class. Save the file and press F5 so you can

test it in the interactive window:

>>>

>>> miles = JackRussellTerrier("Miles", 4)

>>> miles.speak()

'Miles barks: Arf'

Now when you call miles.speak(), you’ll see output reflecting the new formatting in the Dog

class.

Note: In the above examples, the class hierarchy is very straightforward. The JackRussellTerrier

class has a single parent class, Dog. In real-world examples, the class hierarchy can get quite

complicated.

super() does much more than just search the parent class for a method or an attribute. It

traverses the entire class hierarchy for a matching method or attribute. If you aren’t careful,

super() can have surprising results.

4.d. Check Your Understanding

Exercise: Class Inheritance

Create a GoldenRetriever class that inherits from the Dog class. Give the sound argument of

GoldenRetriever.speak() a default value of "Bark". Use the following code for your parent Dog

class:

class Dog:

 species = "Canis familiaris"

 def __init__(self, name, age):

 self.name = name

 self.age = age

19

 def __str__(self):

 return f"{self.name} is {self.age} years old"

 def speak(self, sound):

 return f"{self.name} says {sound}"

Solution: Create a Car Class

Create a class called GoldenRetriever that inherits from the Dog class and overrides the

.speak() method:

class GoldenRetriever(Dog):

 def speak(self, sound="Bark"):

 return super().speak(sound)

The sound parameter in GoldenRetriever.speak() is given a default value of "Bark". Then

super() is used to call the parent class’s .speak() method with the same argument passed to

sound as the GoldenRetriever class’s .speak() method.

5. Conclusion

In this project, you learned about object-oriented programming (OOP) in Python. Most modern

programming languages, such as Java, C#, and C++, follow OOP principles, so the knowledge

you gained here will be applicable no matter where your programming career takes you.

In this project, you learned how to:

● Define a class, which is a sort of blueprint for an object

● Instantiate an object from a class

● Use attributes and methods to define the properties and behaviors of an object

● Use inheritance to create child classes from a parent class

● Reference a method on a parent class using super()

● Check if an object inherits from another class using isinstance()

Source:

Note: This project is adapted from the chapter “Object-Oriented Programming (OOP)” in Python

Basics: A Practical Introduction to Python 3 book.

https://realpython.com/products/python-basics-book/
https://realpython.com/products/python-basics-book/

