
Introduction to SQL Programming

By Jim Sullivan from Coding Bootcamps

coding-bootcamps.com

https://blockchain.dcwebmakers.coml/
https://coding-bootcamps.com/

Prerequisite

Introduction to Database Design

https://learn.coding-bootcamps.com/p/learn-how-to-design-databases-by-examples

Recap
In our previous course, we covered the following topics:

1- Before the Advent of Database Systems
2- Fundamental Concepts
3- Characteristics and Benefits of a Database
4- Types of Data Models
5- Data Modeling

Recap…
6- Classification of Database Management Systems
7- The Relational Data Model
8- The Entity Relationship Data Model
9- Integrity Rules and Constraints
10- ER Modeling

Functional Dependencies
Session 1

Session 1

▪ Functional Dependencies
▪ Rules of Functional Dependencies
▪ Inference Rules
▪ Dependency Diagram

Session 1 Database Design

Functional Dependency

▪A functional dependency (FD) is a relationship between
two attributes, typically between the PK and other
non-key attributes within a table. For any relation R,
attribute Y is functionally dependent on attribute X
(usually the PK), if for every valid instance of X, that
value of X uniquely determines the value of Y

Session 1 Database Design

Roles of Functional Dependency

Inference Rules
Armstrong’s axioms are a set of inference rules used to
infer all the functional dependencies on a relational
database.

Union
This rule suggests that if two tables are separate, and
the PK is the same, you may want to consider putting
them together.

Session 1 Database Design

Roles of Functional Dependency

Decomposition
Decomposition is the reverse of the Union rule. If you
have a table that appears to contain two entities that are
determined by the same PK, consider breaking them up
into two tables.

Session 1 Database Design

Dependency Diagram

A dependency diagram illustrates the various
dependencies that might exist in a non-normalized
table.

Normalization
Session 2

Session 2

▪ What Is Normalization?
▪ First normal form (1NF)
▪ Second normal form (2NF)
▪ Third normal form (3NF)
▪ Boyce-Codd normal form (BCNF)

Session 2 Database Design

Normalization should be part of the database design
process. However, it is difficult to separate the
normalization process from the ER modeling process so
the two techniques should be used concurrently.

Session 2 Database Design

Use an Entity Relation Diagram (ERD) to provide the big
picture, or macro view, of an organization’s data
requirements and operations. This is created through an
iterative process that involves identifying relevant
entities, their attributes and their relationships.

Normalization procedure focuses on characteristics of
specific entities and represents the micro view of entities
within the ERD.

Session 2 Database Design

Normalization is the branch of relational theory that
provides design insights. It is the process of determining
how much redundancy exists in a table. The goals of
normalization are to:

•Be able to characterize the level of redundancy in a
relational schema

•Provide mechanisms for transforming schemas in order
to remove redundancy

Session 2 Database Design

Normalization forms

•First normal form (1NF)
•Second normal form (2NF)
•Third normal form (3NF)
•Boyce-Codd normal form (BCNF)

Session 2 Database Design

Normalization and Database Design

During the normalization process of database design,
make sure that proposed entities meet required normal
form before table structures are created. Many
real-world databases have been improperly designed or
burdened with anomalies if improperly modified during
the course of time. You may be asked to redesign and
modify existing databases. This can be a large
undertaking if the tables are not properly normalized.

Database Development Process
Session 3

Session 3
▪ Software Development Life Cycle – Waterfall
▪ Database Life Cycle
▪ Requirements Gathering & Analysis
▪ Logical Design
▪ Implementation & Populating the

Database

Session 3 Database Design

Software
Development Life
Cycle – Waterfall

Session 3 Database Design

Database Life Cycle
We can use the waterfall cycle as the basis for a model
of database development that incorporates three
assumptions:

1- We can separate the development of a database –
that is, specification and creation of a schema to define
data in a database – from the user processes that make
use of the database.

Session 3 Database Design

Database Life Cycle…

2- We can use the three-schema architecture as a basis
for distinguishing the activities associated with a
schema.

3- We can represent the constraints to enforce the
semantics of the data once within a database, rather
than within every user process that uses the data.

Session 3 Database Design

Database Life Cycle Steps

1.Requirements Gathering
2.Analysis
3.Logical Design
4.Implementation
5.Realizing the Design
6.Populating the Database

Session 3 Database Design

Guidelines for Developing an ER Diagram

1.Document all entities discovered during the information-gathering stage.
2.Document all attributes that belong to each entity. Select candidate and

primary keys. Ensure that all non-key attributes for each entity are
full-functionally dependent on the primary key.

3.Develop an initial ER diagram and review it with appropriate personnel.
(Remember that this is an iterative process.)

4.Create new entities (tables) for multivalued attributes and repeating
groups. Incorporate these new entities (tables) in the ER diagram. Review
with appropriate personnel.

5.Verify ER modeling by normalizing tables.

Database Users
Session 4

Session 4

▪ End Users

Session 4 Database Design

End Users

•Application user
•Sophisticated user
•Application Programmers
•Database Administrators (DBA)

SQL Structured Query Language
Session 5

Session 5
▪ Create Database
▪ Create tables
▪ Data Type
▪ Optional Column Constraints
▪ Table Constraints
▪ User Defined Types

Session 5 Database Design

Create Database

CREATE DATABASE ...

Session 5 Database Design

Create tables

CREATE TABLE <tablename>

(

ColumnName, Datatype, Optional Column Constraint,

ColumnName, Datatype, Optional Column Constraint,

Optional table Constraints

);

Session 5 Database Design

Data Types

•Int –Integer (whole number) data from -2^31 (-2,147,483,648) through
2^31 – 1 (2,147,483,647)

•Smallint –Integer data from 2^15 (-32,768) through 2^15 – 1 (32,767)
•Tinyint–Integer data from 0 through 255
•Decimal –Fixed precision and scale numeric data from -10^38 -1 through
10^38

•Numeric –A synonym for decimal
•Timestamp –A database-wide unique number
•Uniqueidentifier –A globally unique identifier (GUID)

For more data types, read your course materials

Session 5 Database Design

Optional Column Constraints

The Optional Column Constraints are NULL, NOT NULL, UNIQUE,
PRIMARY KEY and DEFAULT, used to initialize a value for a new record.
The column constraint NULL indicates that null values are allowed, which
means that a row can be created without a value for this column. The
column constraint NOT NULL indicates that a value must be supplied when
a new row is created.

Session 5 Database Design

Table Constraints

IDENTITY constraint

UNIQUE constraint
The UNIQUE constraint prevents duplicate values from being entered into
a column.

•Both PK and UNIQUE constraints are used to enforce entity integrity.
•Multiple UNIQUE constraints can be defined for a table.
•When a UNIQUE constraint is added to an existing table, the existing data
is always validated.

•A UNIQUE constraint can be placed on columns that accept nulls. Only
one row can be NULL.

•A UNIQUE constraint automatically creates a unique index on the selected
column.

Session 5 Database Design

Table Constraints…

FOREIGN KEY constraint
•The FOREIGN KEY (FK) constraint defines a column, or combination of
columns, whose values match the PRIMARY KEY (PK) of another table.

•Values in an FK are automatically updated when the PK values in the
associated table are updated/changed.

•FK constraints must reference PK or the UNIQUE constraint of another
table.

•The number of columns for FK must be same as PK or UNIQUE constraint.
•If the WITH NOCHECK option is used, the FK constraint will not validate
existing data in a table.

•No index is created on the columns that participate in an FK constraint.

Session 5 Database Design

Table Constraints…

CHECK constraint
The CHECK constraint restricts values that can be entered into a table.

•It can contain search conditions similar to a WHERE clause.
•It can reference columns in the same table.
•The data validation rule for a CHECK constraint must evaluate to a
boolean expression.

•It can be defined for a column that has a rule bound to it.

Session 5 Database Design

Table Constraints…

DEFAULT constraint
The DEFAULT constraint is used to supply a value that is automatically
added for a column if the user does not supply one.

•A column can have only one DEFAULT.
•The DEFAULT constraint cannot be used on columns with a timestamp
data type or identity property.

•DEFAULT constraints are automatically bound to a column when they are
created.

Session 5 Database Design

User Defined Types

User defined types are always based on system-supplied data type. They
can enforce data integrity and they allow nulls.

Session 5 Database Design

ALTER TABLE

You can use ALTER TABLE statements to add and drop constraints.
ALTER TABLE allows columns to be removed.
When a constraint is added, all existing data are verified for violations.

DROP TABLE

The DROP TABLE will remove a table from the database. Make sure you
have the correct database selected.

SQL Data Manipulation Language
Session 6

Session 6
▪ SELECT SQL statements
▪ INSERT SQL statements
▪ UPDATE SQL statements
▪ DELETE SQL statements
▪ SQL Built-in Functions
▪ Joining Tables

Session 6 Database Design

The SQL data manipulation language (DML) is used to query and modify
database data. In this Session, we will describe how to use the SELECT,
INSERT, UPDATE, and DELETE SQL DML command statements, defined
below.

•SELECT – to query data in the database
•INSERT – to insert data into a table
•UPDATE – to update data in a table
•DELETE – to delete data from a table

Session 6 Database Design

In the SQL DML statement:
•Each clause in a statement should begin on a new line.
•The beginning of each clause should line up with the beginning of other
clauses.

•If a clause has several parts, they should appear on separate lines and be
indented under the start of the clause to show the relationship.

•Upper case letters are used to represent reserved words.
•Lower case letters are used to represent user-defined words.

Session 6 Database Design

SELECT SQL statements

SELECT DISTINCT item(s)
 FROM table(s)
 WHERE predicate
 GROUP BY field(s)
 ORDER BY fields

Session 6 Database Design

SELECT SQL statements

•SELECT statement alone and with WHERE criteria
•Using wildcards in the LIKE clause
•SELECT statement with ORDER BY clause
•SELECT statement with GROUP BY clause
•Restricting rows with HAVING

Session 6 Database Design

INSERT SQL statements

The INSERT statement adds rows to a table. In addition,
•INSERT specifies the table or view that data will be inserted into.
•Column_list lists columns that will be affected by the INSERT.
•If a column is omitted, each value must be provided.
•If you are including columns, they can be listed in any order.
•VALUES specifies the data that you want to insert into the table. VALUES
is required.

Session 6 Database Design

INSERT SQL statements

INSERT [INTO] Table_name | view name [column_list]
DEFAULT VALUES | values_list | select statement

Session 6 Database Design

INSERT SQL statements

When inserting rows with the INSERT statement, these rules apply:
•Inserting an empty string (‘ ‘) into a varchar or text column inserts a single
space.

•All char columns are right-padded to the defined length.
•All trailing spaces are removed from data inserted into varchar columns,
except in strings that contain only spaces. These strings are truncated to a
single space.

•If an INSERT statement violates a constraint, default or rule, or if it is the
wrong data type, the statement fails and SQL Server displays an error
message.

Session 6 Database Design

INSERT SQL statements

When you specify values for only some of the columns in the column_list,
one of three things can happen to the columns that have no values:

1.A default value is entered if the column has a DEFAULT constraint, if a
default is bound to the column, or if a default is bound to the underlying
user-defined data type.

2.NULL is entered if the column allows NULLs and no default value exists for
the column.

3.An error message is displayed and the row is rejected if the column is
defined as NOT NULL and no default exists.

Session 6 Database Design

UPDATE statement

The UPDATE statement changes data in existing rows either by adding
new data or modifying existing data.

Including subqueries in an UPDATE statement

Session 6 Database Design

DELETE statement

The DELETE statement removes rows from a record set. DELETE names
the table or view that holds the rows that will be deleted and only one table
or row may be listed at a time. WHERE is a standard WHERE clause that
limits the deletion to select records.

DELETE [FROM] {table_name | view_name }
[WHERE clause]

Session 6 Database Design

DELETE statement

The rules for the DELETE statement are:

•If you omit a WHERE clause, all rows in the table are removed (except for
indexes, the table, constraints).

•DELETE cannot be used with a view that has a FROM clause naming
more than one table. (Delete can affect only one base table at a time.)

Session 6 Database Design

Built-in Functions

There are many built-in functions in SQL Server such as:

•Aggregate: returns summary values
•Conversion: transforms one data type to another
•Date: displays information about dates and times
•Mathematical: performs operations on numeric data
•String: performs operations on character strings, binary data or
expressions

•System: returns a special piece of information from the database
•Text and image: performs operations on text and image data

Session 6 Database Design

Built-in Functions

FUNCTION DESCRIPTION
AVG Returns the average of all the values, or only the

DISTINCT values, in the expression.
COUNT Returns the number of non-null values in the

expression. When DISTINCT is specified, COUNT
finds the number of unique non-null values.

COUNT(*) Returns the number of rows. COUNT(*) takes no
parameters and cannot be used with DISTINCT.

MAX Returns the maximum value in the expression. MAX
can be used with numeric, character and datetime
columns, but not with bit columns. With character
columns, MAX finds the highest value in the collating
sequence. MAX ignores any null values.

MIN Returns the minimum value in the expression. MIN can
be used with numeric, character and datetime columns,
but not with bit columns. With character columns, MIN
finds the value that is lowest in the sort sequence. MIN
ignores any null values.

SUM Returns the sum of all the values, or only the
DISTINCT values, in the expression. SUM can be used
with numeric columns only.

Session 6 Database Design

Joining Tables

Joining two or more tables is the process of comparing the data in
specified columns and using the comparison results to form a new table
from the rows that qualify. A join statement:

•Specifies a column from each table
•Compares the values in those columns row by row
•Combines rows with qualifying values into a new row

Session 6 Database Design

Joining Tables

•Inner join
•Left outer join
•Right outer join
•Full outer join
•Cross join

Recap

What we have learned so far?

Next Session

▪ Exercises and projects

Private tutoring sessions for system administrator
management- Weekly and monthly plans

Database design and SQL coding- Private tutoring sessions

Private Coaching Sessions

https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-system-administrator-management
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-system-administrator-management
https://learn.coding-bootcamps.com/p/private-one-to-one-tutoring-for-mastering-database-design-and-sql-coding

▪Introduction to Linux OS
▪Learn PHP Programming
▪Web Development with PHP & MySQL
▪Learn Node.JS, Express.JS
and MongoDB

Next Classes

https://learn.coding-bootcamps.com/p/learn-linux-coding-by-examples-intro-level
https://learn.coding-bootcamps.com/p/learn-php-programming-by-hands-on-examples
https://learn.coding-bootcamps.com/p/learn-php-and-mysql-web-development-by-examples
https://learn.coding-bootcamps.com/p/learn-node-js-express-js-and-mongodb-by-examples
https://learn.coding-bootcamps.com/p/learn-node-js-express-js-and-mongodb-by-examples

Thank you

coding-bootcamps.com

