
Coding-Bootcamps.com

1

Intro to SQL Programming

By Coding-Bootcamps.com

Contents

Review

Session 1- Functional Dependencies

Session 2- Normalization

Session 3- Database Development Process

Session 4- Database Users

Session 5- SQL Structured Query Language

Session 6- SQL Data Manipulation Language

Next Classes

Coding-Bootcamps.com

2

Review

In our previous course, we discussed the following topics:

1- Before the Advent of Database Systems

2- Fundamental Concepts

3- Characteristics and Benefits of a Database

4- Types of Data Models

 5- Data Modeling

6- Classification of Database Management Systems

7- The Relational Data Model

8- The Entity Relationship Data Model

9- Integrity Rules and Constraints

 10- ER Modeling

A basic knowledge of database is required in order to complete this course successfully, so if you

have not taken our previous course, you can visit the below link to register it.

 Introduction to Database Design

https://learn.coding-bootcamps.com/p/learn-how-to-design-databases-by-examples

Coding-Bootcamps.com

3

Session 1

Session 1- Functional Dependencies

A functional dependency (FD) is a relationship between two attributes, typically between

the PK and other non-key attributes within a table. For any relation R, attribute Y is

functionally dependent on attribute X (usually the PK), if for every valid instance of X, that

value of X uniquely determines the value of Y. This relationship is indicated by the

representation below:

X ———–> Y

The left side of the above FD diagram is called the determinant, and the right side is the dependent.
Here are a few examples.

In the first example, below, SIN determines Name, Address and Birthdate. Given SIN, we can
determine any of the other attributes within the table.

SIN ———-> Name, Address, Birthdate

For the second example, SIN and Course determine the date completed (DateCompleted). This must
also work for a composite PK.

SIN, Course ———> DateCompleted

The third example indicates that ISBN determines Title.

ISBN ———–> Title

Rules of Functional Dependencies

Consider the following table of data r(R) of the relation schema R(ABCDE) shown in

Table 1.1.

Coding-Bootcamps.com

4

As you look at this table, ask yourself: What kind of dependencies can we observe among

the attributes in Table R? Since the values of A are unique (a1, a2, a3, etc.), it follows from

the FD definition that:

A → B, A → C, A → D, A → E

It also follows that A →BC (or any other subset of ABCDE).

This can be summarized as A →BCDE.

From our understanding of primary keys, A is a primary key.

Since the values of E are always the same (all e1), it follows that:

A → E, B → E, C → E, D → E

However, we cannot generally summarize the above with ABCD → E because, in

general, A → E, B → E, AB → E.

Other observations:

1. Combinations of BC are unique, therefore BC → ADE.

2. Combinations of BD are unique, therefore BD → ACE.

3. If C values match, so do D values.

1. Therefore, C → D

2. However, D values don’t determine C values

3. So C does not determine D, and D does not determine C.

Looking at actual data can help clarify which attributes are dependent and which are

determinants.

Inference Rules

Armstrong’s axioms are a set of inference rules used to infer all the functional

dependencies on a relational database. They were developed by William W. Armstrong. The

following describes what will be used, in terms of notation, to explain these axioms.

Let R(U) be a relation scheme over the set of attributes U. We will use the letters X, Y, Z

to represent any subset of and, for short, the union of two sets of attributes, instead of the

usual X U Y.

Axiom of reflexivity

This axiom says, if Y is a subset of X, then X determines Y (see Figure 1.1).

http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2013/12/Ch-11-Axion-Reflexivity.jpg

Coding-Bootcamps.com

5

Figure 1.1. Equation for axiom of reflexivity

For example, PartNo —> NT123 where X (PartNo) is composed of more than one piece of
information; i.e., Y (NT) and partID (123).

Axiom of augmentation

The axiom of augmentation, also known as a partial dependency, says if X determines Y, then XZ
determines YZ for any Z (see Figure 1.2).

Figure 1.2. Equation for axiom of augmentation

The axiom of augmentation says that every non-key attribute must be fully dependent on the PK. In
the example shown below, StudentName, Address, City, Prov, and PC (postal code) are only
dependent on the StudentNo, not on the StudentNo and Grade.

StudentNo, Course —> StudentName, Address, City, Prov, PC, Grade, DateCompleted

This situation is not desirable because every non-key attribute has to be fully dependent on the PK.
In this situation, student information is only partially dependent on the PK (StudentNo).

To fix this problem, we need to break the original table down into two as follows:

 Table 1: StudentNo, Course, Grade, DateCompleted
 Table 2: StudentNo, StudentName, Address, City, Prov, PC

Axiom of transitivity

The axiom of transitivity says if X determines Y, and Y determines Z, then X must also determine Z
(see Figure 1.3).

Figure 1.3. Equation for axiom of transitivity

The table below has information not directly related to the student; for instance, ProgramID and
ProgramName should have a table of its own. ProgramName is not dependent on StudentNo; it’s
dependent on ProgramID.

StudentNo —> StudentName, Address, City, Prov, PC, ProgramID, ProgramName

This situation is not desirable because a non-key attribute (ProgramName) depends on another non-
key attribute (ProgramID).

http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2013/12/Ch-11-Axiom-of-Augmentation-300x34.jpg
http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2013/12/Ch-11-Axiom-of-transitivity-300x30.jpg

Coding-Bootcamps.com

6

To fix this problem, we need to break this table into two: one to hold information about the student
and the other to hold information about the program.

 Table 1: StudentNo —> StudentName, Address, City, Prov, PC, ProgramID
 Table 2: ProgramID —> ProgramName

However we still need to leave an FK in the student table so that we can identify which program the
student is enrolled in.

Union

This rule suggests that if two tables are separate, and the PK is the same, you may want to

consider putting them together. It states that if X determines Y and X determines Z then X

must also determine Y and Z (see Figure 1.4).

Figure 1.4. Equation for the Union rule

For example, if:

 SIN —> EmpName
 SIN —> SpouseName

You may want to join these two tables into one as follows:

SIN –> EmpName, SpouseName

Some database administrators (DBA) might choose to keep these tables separated for a couple

of reasons. One, each table describes a different entity so the entities should be kept apart.

Two, if SpouseName is to be left NULL most of the time, there is no need to include it in the

same table as EmpName.

Decomposition

Decomposition is the reverse of the Union rule. If you have a table that appears to contain

two entities that are determined by the same PK, consider breaking them up into two tables.

This rule states that if X determines Y and Z, then X determines Y and X determines Z

separately (see Figure 1.5).

Dependency Diagram

http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2013/12/Ch-11-Axiom-Union-300x23.jpg

Coding-Bootcamps.com

7

A dependency diagram, shown in Figure 1.6, illustrates the various dependencies that

might exist in a non-normalized table. A non-normalized table is one that has data

redundancy in it.

The following dependencies are identified in this table:

ProjectNo and EmpNo, combined, are the PK.

Partial Dependencies:

ProjectNo —> ProjName

EmpNo —> EmpName, DeptNo,

ProjectNo, EmpNo —> HrsWork

Transitive Dependency:

DeptNo —> DeptName

Key Terms

Armstrong’s axioms: a set of inference rules used to infer all the functional dependencies on a
relational database

DBA: database administrator

decomposition: a rule that suggests if you have a table that appears to contain two entities that are
determined by the same PK, consider breaking them up into two tables

dependent: the right side of the functional dependency diagram

determinant: the left side of the functional dependency diagram

functional dependency (FD): a relationship between two attributes, typically between the PK and
other non-key attributes within a table

non-normalized table: a table that has data redundancy in it

Union: a rule that suggests that if two tables are separate, and the PK is the same, consider putting
them together

Coding-Bootcamps.com

8

Session 2

Session 2- Normalization

Normalization should be part of the database design process. However, it is difficult to

separate the normalization process from the ER modeling process so the two techniques

should be used concurrently.

Use an entity relation diagram (ERD) to provide the big picture, or macro view, of an

organization’s data requirements and operations. This is created through an iterative process

that involves identifying relevant entities, their attributes and their relationships.

Normalization procedure focuses on characteristics of specific entities and represents the

micro view of entities within the ERD.

What Is Normalization?

Normalization is the branch of relational theory that provides design insights. It is the

process of determining how much redundancy exists in a table. The goals of normalization

are to:

 Be able to characterize the level of redundancy in a relational schema

 Provide mechanisms for transforming schemas in order to remove redundancy

Normalization theory draws heavily on the theory of functional dependencies.

Normalization theory defines six normal forms (NF). Each normal form involves a set of

dependency properties that a schema must satisfy and each normal form gives guarantees

about the presence and/or absence of update anomalies. This means that higher normal forms

have less redundancy, and as a result, fewer update problems.

Normal Forms

All the tables in any database can be in one of the normal forms we will discuss next.

Ideally we only want minimal redundancy for PK to FK. Everything else should be derived

from other tables. There are six normal forms, but we will only look at the first four, which

are:

 First normal form (1NF)

 Second normal form (2NF)

 Third normal form (3NF)

 Boyce-Codd normal form (BCNF)

BCNF is rarely used.

First Normal Form (1NF)

Coding-Bootcamps.com

9

In the first normal form, only single values are permitted at the intersection of each row

and column; hence, there are no repeating groups.

To normalize a relation that contains a repeating group, remove the repeating group and

form two new relations.

The PK of the new relation is a combination of the PK of the original relation plus an

attribute from the newly created relation for unique identification.

Process for 1NF

We will use the Student_Grade_Report table below, from a School database, as our

example to explain the process for 1NF.

 In the Student Grade Report table, the repeating group is the course information. A student

can take many courses.

 Remove the repeating group. In this case, it’s the course information for each student.

 Identify the PK for your new table.

 The PK must uniquely identify the attribute value (StudentNo and CourseNo).

 After removing all the attributes related to the course and student, you are left with the

student course table (StudentCourse).

 The Student table (Student) is now in first normal form with the repeating group removed.

The two new tables are shown below.

Student (StudentNo, StudentName, Major)

StudentCourse (StudentNo, CourseNo, CourseName, InstructorNo, InstructorName,
InstructorLocation, Grade)

How to update 1NF anomalies

StudentCourse (StudentNo, CourseNo, CourseName, InstructorNo, InstructorName,

InstructorLocation, Grade)

 To add a new course, we need a student.

 When course information needs to be updated, we may have inconsistencies.

 To delete a student, we might also delete critical information about a course.

Second Normal Form (2NF)

For the second normal form, the relation must first be in 1NF. The relation is

automatically in 2NF if, and only if, the PK comprises a single attribute.

(StudentNo, StudentName, Major, CourseNo, CourseName, InstructorNo, InstructorName,

InstructorLocation, Grade)

Coding-Bootcamps.com

10

If the relation has a composite PK, then each non-key attribute must be fully dependent on

the entire PK and not on a subset of the PK (i.e., there must be no partial dependency or

augmentation).

Process for 2NF

To move to 2NF, a table must first be in 1NF.

 The Student table is already in 2NF because it has a single-column PK.

 When examining the Student Course table, we see that not all the attributes are fully

dependent on the PK; specifically, all course information. The only attribute that is fully

dependent is grade.

 Identify the new table that contains the course information.

 Identify the PK for the new table.

The three new tables are shown below.

Student (StudentNo, StudentName, Major)

CourseGrade (StudentNo, CourseNo, Grade)

CourseInstructor (CourseNo, CourseName, InstructorNo, InstructorName, InstructorLocation)

How to update 2NF anomalies

 When adding a new instructor, we need a course.

 Updating course information could lead to inconsistencies for instructor information.

 Deleting a course may also delete instructor information.

Third Normal Form (3NF)

To be in third normal form, the relation must be in second normal form. Also all transitive

dependencies must be removed; a non-key attribute may not be functionally dependent on

another non-key attribute.

Process for 3NF

 Eliminate all dependent attributes in transitive relationship(s) from each of the tables that
have a transitive relationship.

 Create new table(s) with removed dependency.
 Check new table(s) as well as table(s) modified to make sure that each table has a

determinant and that no table contains inappropriate dependencies.
 See the four new tables below.

Student (StudentNo, StudentName, Major)

Coding-Bootcamps.com

11

CourseGrade (StudentNo, CourseNo, Grade)

Course (CourseNo, CourseName, InstructorNo)

Instructor (InstructorNo, InstructorName, InstructorLocation)

At this stage, there should be no anomalies in third normal form. Let’s look at the dependency
diagram (Figure 2.1) for this example. The first step is to remove repeating groups, as discussed
above.

Student (StudentNo, StudentName, Major)

StudentCourse (StudentNo, CourseNo, CourseName, InstructorNo, InstructorName,
InstructorLocation, Grade)

To recap the normalization process for the School database, review the dependencies shown in
Figure 2.1.

Figure 2.1 Dependency diagram,

The abbreviations used in Figure 2.1 are as follows:

 PD: partial dependency
 TD: transitive dependency
 FD: full dependency (Note: FD typically stands for functional dependency. Using FD as an

abbreviation for full dependency is only used in Figure 2.1.)

Boyce-Codd Normal Form (BCNF)

When a table has more than one candidate key, anomalies may result even though the

relation is in 3NF. Boyce-Codd normal form is a special case of 3NF. A relation is in BCNF

if, and only if, every determinant is a candidate key.

BCNF Example 1

Consider the following table (St_Maj_Adv).

Student_id Major Advisor

111 Physics Smith

111 Music Chan

320 Math Dobbs

671 Physics White

803 Physics Smith

http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2013/12/Ch-11-Dependency-Diagram-School-300x89.jpg

Coding-Bootcamps.com

12

The semantic rules (business rules applied to the database) for this table are:

1. Each Student may major in several subjects.

2. For each Major, a given Student has only one Advisor.

3. Each Major has several Advisors.

4. Each Advisor advises only one Major.

5. Each Advisor advises several Students in one Major.

The functional dependencies for this table are listed below. The first one is a candidate

key; the second is not.

1. Student_id, Major ——> Advisor

2. Advisor ——> Major

Anomalies for this table include:

1. Delete – student deletes advisor info

2. Insert – a new advisor needs a student

3. Update – inconsistencies

Note: No single attribute is a candidate key.

PK can be Student_id, Major or Student_id, Advisor.

To reduce the St_Maj_Adv relation to BCNF, you create two new tables:

1. St_Adv (Student_id, Advisor)

2. Adv_Maj (Advisor, Major)

St_Adv table

Student_id Advisor

111 Smith

111 Chan

320 Dobbs

671 White

803 Smith

Adv_Maj table

Advisor Major

Smith Physics

Chan Music

Dobbs Math

White Physics

BCNF Example 2

Consider the following table (Client_Interview).

ClientNo InterviewDate InterviewTime StaffNo RoomNo

CR76 13-May-02 10.30 SG5 G101

Coding-Bootcamps.com

13

CR56 13-May-02 12.00 SG5 G101

CR74 13-May-02 12.00 SG37 G102

CR56 1-July-02 10.30 SG5 G102

FD1 – ClientNo, InterviewDate –> InterviewTime, StaffNo, RoomNo (PK)

FD2 – staffNo, interviewDate, interviewTime –> clientNO (candidate key: CK)

FD3 – roomNo, interviewDate, interviewTime –> staffNo, clientNo (CK)

FD4 – staffNo, interviewDate –> roomNo

A relation is in BCNF if, and only if, every determinant is a candidate key. We need to

create a table that incorporates the first three FDs (Client_Interview2 table) and another

table (StaffRoom table) for the fourth FD.

Client_Interview2 table

ClientNo InterviewDate InterViewTime StaffNo

CR76 13-May-02 10.30 SG5

CR56 13-May-02 12.00 SG5

CR74 13-May-02 12.00 SG37

CR56 1-July-02 10.30 SG5

StaffRoom table

StaffNo InterviewDate RoomNo

SG5 13-May-02 G101

SG37 13-May-02 G102

SG5 1-July-02 G102

Normalization and Database Design

During the normalization process of database design, make sure that proposed entities

meet required normal form before table structures are created. Many real-world databases

have been improperly designed or burdened with anomalies if improperly modified during

the course of time. You may be asked to redesign and modify existing databases. This can be

a large undertaking if the tables are not properly normalized.

Key Terms and Abbreviations

Boyce-Codd normal form (BCNF): a special case of 3rd NF

first normal form (1NF): only single values are permitted at the intersection of each row and column
so there are no repeating groups

Coding-Bootcamps.com

14

normalization: the process of determining how much redundancy exists in a table

second normal form (2NF): the relation must be in 1NF and the PK comprises a single attribute

semantic rules: business rules applied to the database

third normal form (3NF): the relation must be in 2NF and all transitive dependencies must be
removed; a non-key attribute may not be functionally dependent on another non-key attribute

Exercises

Complete sessions 1 and 2 before doing these exercises.

1. What is normalization?
2. When is a table in 1NF?
3. When is a table in 2NF?
4. When is a table in 3NF?
5. Identify and discuss each of the indicated dependencies in the dependency diagram shown

in Figure 2.2.

Figure 2.2 For question 5

6. To keep track of students and courses, a new college uses the table structure in Figure 2.3.
Draw the dependency diagram for this table.

Figure 2.3 For question 6

7. Using the dependency diagram you just drew, show the tables (in their third normal form)
you would create to fix the problems you encountered. Draw the dependency diagram for
the fixed table.

8. An agency called Instant Cover supplies part-time/temporary staff to hotels in Scotland.
Figure 2.4 lists the time spent by agency staff working at various hotels. The national
insurance number (NIN) is unique for every member of staff. Use Figure 2.4 to answer
questions (a) and (b).

http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2014/03/Ch11-Exercises-Fig11-1-e1409835870943.jpg
http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2014/03/Ch11-Exercises-Fig11-2-e1409836100289.jpg

Coding-Bootcamps.com

15

Figure 2.4 For question 8

1. This table is susceptible to update anomalies. Provide examples of insertion,
deletion and update anomalies.

2. Normalize this table to third normal form. State any assumptions.
9. Fill in the blanks:

1. ____________________ produces a lower normal form.
2. Any attribute whose value determines other values within a row is called a(n)

____________________.
3. An attribute that cannot be further divided is said to display

____________________.
4. ____________________ refers to the level of detail represented by the values

stored in a table’s row.
5. A relational table must not contain ____________________ groups.

http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2014/03/Ch12-Exercises-Fig12-1-e1409836269456.jpg

Coding-Bootcamps.com

16

Session 3

Session 3- Database Development Process

A core aspect of software engineering is the subdivision of the development process into a

series of phases, or steps, each of which focuses on one aspect of the development. The

collection of these steps is sometimes referred to as the software development life cycle

(SDLC). The software product moves through this life cycle (sometimes repeatedly as it is

refined or redeveloped) until it is finally retired from use. Ideally, each phase in the life cycle

can be checked for correctness before moving on to the next phase.

Software Development Life Cycle – Waterfall

Let us start with an overview of the waterfall model such as you will find in most software

engineering text courses. This waterfall figure, seen in Figure 3.1, illustrates a general

waterfall model that could apply to any computer system development. It shows the process

as a strict sequence of steps where the output of one step is the input to the next and all of one

step has to be completed before moving onto the next.

Coding-Bootcamps.com

17

We can use the waterfall process as a means of identifying the tasks that are required,

together with the input and output for each activity. What is important is the scope of the

activities, which can be summarized as follows:

Establishing requirements involves consultation with, and agreement among, stakeholders about

what they want from a system, expressed as a statement of requirements.

Analysis starts by considering the statement of requirements and finishes by producing a system

specification. The specification is a formal representation of what a system should do, expressed in

terms that are independent of how it may be realized.

Design begins with a system specification, produces design documents and provides a detailed

description of how a system should be constructed.

Implementation is the construction of a computer system according to a given design document and

taking into account the environment in which the system will be operating (e.g., specific hardware or

software available for the development). Implementation may be staged, usually with an initial

system that can be validated and tested before a final system is released for use.

Testing compares the implemented system against the design documents and requirements

specification and produces an acceptance report or, more usually, a list of errors and bugs that

require a review of the analysis, design and implementation processes to correct (testing is usually

the task that leads to the waterfall model iterating through the life cycle).

Maintenance involves dealing with changes in the requirements or the implementation

environment, bug fixing or porting of the system to new environments (e.g., migrating a system from

a standalone PC to a UNIX workstation or a networked environment). Since maintenance involves

the analysis of the changes required, design of a solution, implementation and testing of that

solution over the lifetime of a maintained software system, the waterfall life cycle will be repeatedly

revisited.

Database Life Cycle

We can use the waterfall cycle as the basis for a model of database development that

incorporates three assumptions:

1. We can separate the development of a database – that is, specification and creation of a

schema to define data in a database – from the user processes that make use of the

database.

2. We can use the three-schema architecture as a basis for distinguishing the activities

associated with a schema.

3. We can represent the constraints to enforce the semantics of the data once within a

database, rather than within every user process that uses the data.

Coding-Bootcamps.com

18

Coding-Bootcamps.com

19

Using these assumptions and Figure 3.2, we can see that this diagram represents a model

of the activities and their outputs for database development. It is applicable to any class of

DBMS, not just a relational approach.

Database application development is the process of obtaining real-world requirements,

analyzing requirements, designing the data and functions of the system, and then

implementing the operations in the system.

Requirements Gathering

The first step is requirements gathering. During this step, the database designers have to

interview the customers (database users) to understand the proposed system and obtain and

document the data and functional requirements. The result of this step is a document that

includes the detailed requirements provided by the users.

Establishing requirements involves consultation with, and agreement among, all the users

as to what persistent data they want to store along with an agreement as to the meaning and

interpretation of the data elements. The data administrator plays a key role in this process as

they overview the business, legal and ethical issues within the organization that impact on the

data requirements.

The data requirements document is used to confirm the understanding of requirements

with users. To make sure that it is easily understood, it should not be overly formal or highly

encoded. The document should give a concise summary of all users’ requirements – not just a

collection of individuals’ requirements – as the intention is to develop a single shared

database.

The requirements should not describe how the data is to be processed, but rather what the

data items are, what attributes they have, what constraints apply and the relationships that

hold between the data items.

Analysis

Data analysis begins with the statement of data requirements and then produces a

conceptual data model. The aim of analysis is to obtain a detailed description of the data that

will suit user requirements so that both high and low level properties of data and their use are

dealt with. These include properties such as the possible range of values that can be permitted

for attributes (e.g., in the school database example, the student course code, course title and

credit points).

The conceptual data model provides a shared, formal representation of what is being

communicated between clients and developers during database development – it is focused

on the data in a database, irrespective of the eventual use of that data in user processes or

implementation of the data in specific computer environments. Therefore, a conceptual data

model is concerned with the meaning and structure of data, but not with the details affecting

how they are implemented.

Coding-Bootcamps.com

20

The conceptual data model then is a formal representation of what data a database should

contain and the constraints the data must satisfy. This should be expressed in terms that are

independent of how the model may be implemented. As a result, analysis focuses on the

questions, “What is required?” not “How is it achieved?”

Logical Design

Database design starts with a conceptual data model and produces a specification of a

logical schema; this will determine the specific type of database system (network, relational,

object-oriented) that is required. The relational representation is still independent of any

specific DBMS; it is another conceptual data model.

We can use a relational representation of the conceptual data model as input to the logical

design process. The output of this stage is a detailed relational specification, the logical

schema, of all the tables and constraints needed to satisfy the description of the data in the

conceptual data model. It is during this design activity that choices are made as to which

tables are most appropriate for representing the data in a database. These choices must take

into account various design criteria including, for example, flexibility for change, control of

duplication and how best to represent the constraints. It is the tables defined by the logical

schema that determine what data are stored and how they may be manipulated in the

database.

Database designers familiar with relational databases and SQL might be tempted to go

directly to implementation after they have produced a conceptual data model. However, such

a direct transformation of the relational representation to SQL tables does not necessarily

result in a database that has all the desirable properties: completeness, integrity, flexibility,

efficiency and usability. A good conceptual data model is an essential first step towards a

database with these properties, but that does not mean that the direct transformation to SQL

tables automatically produces a good database. This first step will accurately represent the

tables and constraints needed to satisfy the conceptual data model description, and so will

satisfy the completeness and integrity requirements, but it may be inflexible or offer poor

usability. The first design is then flexed to improve the quality of the database design.

Flexing is a term that is intended to capture the simultaneous ideas of bending something for

a different purpose and weakening aspects of it as it is bent.

Coding-Bootcamps.com

21

Figure 3.3 summarizes the iterative (repeated) steps involved in database design, based on

the overview given. Its main purpose is to distinguish the general issue of what tables should

be used from the detailed definition of the constituent parts of each table – these tables are

considered one at a time, although they are not independent of each other. Each iteration that

involves a revision of the tables would lead to a new design; collectively they are usually

referred to as second-cut designs, even if the process iterates for more than a single loop.

Coding-Bootcamps.com

22

First, for a given conceptual data model, it is not necessary that all the user requirements it

represents be satisfied by a single database. There can be various reasons for the development

of more than one database, such as the need for independent operation in different locations

or departmental control over “their” data. However, if the collection of databases contains

duplicated data and users need to access data in more than one database, then there are

possible reasons that one database can satisfy multiple requirements, or issues related to data

replication and distribution need to be examined.

Second, one of the assumptions about database development is that we can separate the

development of a database from the development of user processes that make use of it. This

is based on the expectation that, once a database has been implemented, all data required by

currently identified user processes have been defined and can be accessed; but we also

require flexibility to allow us to meet future requirements changes. In developing a database

for some applications, it may be possible to predict the common requests that will be

presented to the database and so we can optimize our design for the most common requests.

Third, at a detailed level, many aspects of database design and implementation depend on

the particular DBMS being used. If the choice of DBMS is fixed or made prior to the design

task, that choice can be used to determine design criteria rather than waiting until

implementation. That is, it is possible to incorporate design decisions for a specific DBMS

rather than produce a generic design and then tailor it to the DBMS during implementation.

It is not uncommon to find that a single design cannot simultaneously satisfy all the

properties of a good database. So it is important that the designer has prioritized these

properties (usually using information from the requirements specification); for example, to

decide if integrity is more important than efficiency and whether usability is more important

than flexibility in a given development.

At the end of our design stage, the logical schema will be specified by SQL data definition

language (DDL) statements, which describe the database that needs to be implemented to

meet the user requirements.

Implementation

Implementation involves the construction of a database according to the specification of a

logical schema. This will include the specification of an appropriate storage schema, security

enforcement, external schema and so on. Implementation is heavily influenced by the choice

of available DBMSs, database tools and operating environment. There are additional tasks

beyond simply creating a database schema and implementing the constraints – data must be

entered into the tables, issues relating to the users and user processes need to be addressed,

and the management activities associated with wider aspects of corporate data management

need to be supported. In keeping with the DBMS approach, we want as many of these

concerns as possible to be addressed within the DBMS. We look at some of these concerns

briefly now.

Coding-Bootcamps.com

23

In practice, implementation of the logical schema in a given DBMS requires a very

detailed knowledge of the specific features and facilities that the DBMS has to offer. In an

ideal world, and in keeping with good software engineering practice, the first stage of

implementation would involve matching the design requirements with the best available

implementing tools and then using those tools for the implementation. In database terms, this

might involve choosing vendor products with DBMS and SQL variants most suited to the

database we need to implement. However, we don’t live in an ideal world and more often

than not, hardware choice and decisions regarding the DBMS will have been made well in

advance of consideration of the database design. Consequently, implementation can involve

additional flexing of the design to overcome any software or hardware limitations.

Realizing the Design

After the logical design has been created, we need our database to be created according to

the definitions we have produced. For an implementation with a relational DBMS, this will

probably involve the use of SQL to create tables and constraints that satisfy the logical

schema description and the choice of appropriate storage schema (if the DBMS permits that

level of control).

One way to achieve this is to write the appropriate SQL DDL statements into a file that

can be executed by a DBMS so that there is an independent record, a text file, of the SQL

statements defining the database. Another method is to work interactively using a database

tool like SQL Server Management Studio or Microsoft Access. Whatever mechanism is used

to implement the logical schema, the result is that a database, with tables and constraints, is

defined but will contain no data for the user processes.

Populating the Database

After a database has been created, there are two ways of populating the tables – either

from existing data or through the use of the user applications developed for the database.

For some tables, there may be existing data from another database or data files. For

example, in establishing a database for a hospital, you would expect that there are already

some records of all the staff that have to be included in the database. Data might also be

brought in from an outside agency (address lists are frequently brought in from external

companies) or produced during a large data entry task (converting hard-copy manual records

into computer files can be done by a data entry agency). In such situations, the simplest

approach to populate the database is to use the import and export facilities found in the

DBMS.

Facilities to import and export data in various standard formats are usually available (these

functions are also known in some systems as loading and unloading data). Importing enables

a file of data to be copied directly into a table. When data are held in a file format that is not

appropriate for using the import function, then it is necessary to prepare an application

program that reads in the old data, transforms them as necessary and then inserts them into

Coding-Bootcamps.com

24

the database using SQL code specifically produced for that purpose. The transfer of large

quantities of existing data into a database is referred to as a bulk load. Bulk loading of data

may involve very large quantities of data being loaded, one table at a time so you may find

that there are DBMS facilities to postpone constraint checking until the end of the bulk

loading.

Guidelines for Developing an ER Diagram

Note: These are general guidelines that will assist in developing a strong basis for the

actual database design (the logical model).

1. Document all entities discovered during the information-gathering stage.

2. Document all attributes that belong to each entity. Select candidate and primary keys.

Ensure that all non-key attributes for each entity are full-functionally dependent on the

primary key.

3. Develop an initial ER diagram and review it with appropriate personnel. (Remember that this

is an iterative process.)

4. Create new entities (tables) for multivalued attributes and repeating groups. Incorporate

these new entities (tables) in the ER diagram. Review with appropriate personnel.

5. Verify ER modeling by normalizing tables.

Key Terms

analysis: starts by considering the statement of requirements and finishes by producing a system
specification.

bulk load: the transfer of large quantities of existing data into a database

data requirements document: used to confirm the understanding of requirements with the user

design: begins with a system specification, produces design documents and provides a detailed
description of how a system should be constructed

establishing requirements: involves consultation with, and agreement among, stakeholders as to
what they want from a system; expressed as a statement of requirements

flexing: a term that captures the simultaneous ideas of bending something for a different purpose
and weakening aspects of it as it is bent

implementation: the construction of a computer system according to a given design document

maintenance: involves dealing with changes in the requirements or the implementation
environment, bug fixing or porting of the system to new environments

Coding-Bootcamps.com

25

requirements gathering: a process during which the database designer interviews the database user
to understand the proposed system and obtain and document the data and functional requirements

second-cut designs: the collection of iterations that each involves a revision of the tables that lead
to a new design

software development life cycle (SDLC): the series of steps involved in the database development
process

testing: compares the implemented system against the design documents and requirements
specification and produces an acceptance report

waterfall model: shows the database development process as a strict sequence of steps where the
output of one step is the input to the next

waterfall process: a means of identifying the tasks required for database development, together
with the input and output for each activity (see waterfall model)

Exercises

1. Describe the waterfall model. List the steps.
2. What does the acronym SDLC mean, and what does an SDLC portray?
3. What needs to be modified in the waterfall model to accommodate database design?
4. Provide the iterative steps involved in database design.

Coding-Bootcamps.com

26

Session 4

Session 4- Database Users

End Users

End users are the people whose jobs require access to a database for querying, updating

and generating reports.

Application user

The application user is someone who accesses an existing application program to perform

daily tasks.

Sophisticated user

Sophisticated users are those who have their own way of accessing the database. This

means they do not use the application program provided in the system. Instead, they might

define their own application or describe their need directly by using query languages. These

specialized users maintain their personal databases by using ready-made program packages

that provide easy-to-use menu driven commands, such as MS Access.

Application Programmers

These users implement specific application programs to access the stored data. They must

be familiar with the DBMSs to accomplish their task.

Database Administrators (DBA)

This may be one person or a group of people in an organization responsible for authorizing

access to the database, monitoring its use and managing all of the resources to support the use

of the entire database system.

There are no exercises provided for this Session.

Coding-Bootcamps.com

27

Session 5

Session 5- SQL Structured Query

Language

Structured Query Language (SQL) is a database language designed for managing data

held in a relational database management system. SQL was initially developed by IBM in the

early 1970s (Date 1986). The initial version, called SEQUEL (Structured English Query

Language), was designed to manipulate and retrieve data stored in IBM’s quasi-relational

database management system, System R. Then in the late 1970s, Relational Software Inc.,

which is now Oracle Corporation, introduced the first commercially available implementation

of SQL, Oracle V2 for VAX computers.

Many of the currently available relational DBMSs, such as Oracle Database, Microsoft

SQL Server (shown in Figure 5.1), MySQL, IBM DB2, IBM Informix and Microsoft Access,

use SQL.

Coding-Bootcamps.com

28

In a DBMS, the SQL database language is used to:

 Create the database and table structures

 Perform basic data management chores (add, delete and modify)

 Perform complex queries to transform raw data into useful information

In this Session, we will focus on using SQL to create the database and table structures,

mainly using SQL as a data definition language (DDL). In Session 6, we will use SQL as a

data manipulation language (DML) to insert, delete, select and update data within the

database tables.

Create Database

The major SQL DDL statements are CREATE DATABASE and

CREATE/DROP/ALTER TABLE. The SQL statement CREATE is used to create the

database and table structures.

Example: CREATE DATABASE SW

A new database named SW is created by the SQL statement CREATE DATABASE SW.

Once the database is created, the next step is to create the database tables.

The general format for the CREATE TABLE command is:

Tablename is the name of the database table such as Employee. Each field in the

CREATE TABLE has three parts (see above):

1. ColumnName

2. Data type

3. Optional Column Constraint

ColumnName

The ColumnName must be unique within the table. Some examples of ColumnNames are

FirstName and LastName.

CREATE TABLE <tablename>

(

ColumnName, Datatype, Optional Column Constraint,

ColumnName, Datatype, Optional Column Constraint,

Optional table Constraints

);

Coding-Bootcamps.com

29

Data Type

The data type, as described below, must be a system data type or a user-defined data

type. Many of the data types have a size such as CHAR(35) or Numeric(8,2).

Bit–Integer data with either a 1 or 0 value

Int –Integer (whole number) data from -2^31 (-2,147,483,648) through 2^31 – 1

(2,147,483,647)

Smallint –Integer data from 2^15 (-32,768) through 2^15 – 1 (32,767)

Tinyint–Integer data from 0 through 255

Decimal –Fixed precision and scale numeric data from -10^38 -1 through 10^38

Numeric –A synonym for decimal

Timestamp –A database-wide unique number

Uniqueidentifier –A globally unique identifier (GUID)

Money – Monetary data values from -2^63 (-922,337,203,685,477.5808) through 2^63 – 1

(+922,337,203,685,477.5807), with accuracy to one-ten-thousandth of a monetary unit

Smallmoney –Monetary data values from -214,748.3648 through +214,748.3647, with

accuracy to one-ten-thousandth of a monetary unit

Float –Floating precision number data from -1.79E + 308 through 1.79E + 308

Real –Floating precision number data from -3.40E + 38 through 3.40E + 38

Datetime –Date and time data from January 1, 1753, to December 31, 9999, with an

accuracy of one-three-hundredths of a second, or 3.33 milliseconds

Smalldatetime –Date and time data from January 1, 1900, through June 6, 2079, with an

accuracy of one minute

Char –Fixed-length non-Unicode character data with a maximum length of 8,000

characters

Varchar –Variable-length non-Unicode data with a maximum of 8,000 characters

Text –Variable-length non-Unicode data with a maximum length of 2^31 – 1

(2,147,483,647) characters

Binary –Fixed-length binary data with a maximum length of 8,000 bytes

Coding-Bootcamps.com

30

Varbinary –Variable-length binary data with a maximum length of 8,000 bytes

Image –Variable-length binary data with a maximum length of 2^31 – 1 (2,147,483,647)

bytes

Optional Column Constraints

The Optional Column Constraints are NULL, NOT NULL, UNIQUE, PRIMARY KEY

and DEFAULT, used to initialize a value for a new record. The column constraint NULL

indicates that null values are allowed, which means that a row can be created without a value

for this column. The column constraint NOT NULL indicates that a value must be supplied

when a new row is created.

To illustrate, we will use the SQL statement CREATE TABLE EMPLOYEES to create

the employees table with 16 attributes or fields.

Coding-Bootcamps.com

31

The first field is EmployeeNo with a field type of CHAR. For this field, the field length is

10 characters, and the user cannot leave this field empty (NOT NULL).

Similarly, the second field is DepartmentName with a field type CHAR of length 30. After all the table
columns are defined, a table constraint, identified by the word CONSTRAINT, is used to create the
primary key:

CONSTRAINT EmployeePK PRIMARY KEY(EmployeeNo)

We will discuss the constraint property further later in this Session.

USE SW

CREATE TABLE EMPLOYEES

(

EmployeeNo CHAR(10) NOT NULL UNIQUE,

DepartmentName CHAR(30) NOT NULL DEFAULT “Human Resources”,

FirstName CHAR(25) NOT NULL,

LastName CHAR(25) NOT NULL,

Category CHAR(20) NOT NULL,

HourlyRate CURRENCY NOT NULL,

TimeCard LOGICAL NOT NULL,

HourlySalaried CHAR(1) NOT NULL,

EmpType CHAR(1) NOT NULL,

Terminated LOGICAL NOT NULL,

ExemptCode CHAR(2) NOT NULL,

Supervisor LOGICAL NOT NULL,

SupervisorName CHAR(50) NOT NULL,

BirthDate DATE NOT NULL,

CollegeDegree CHAR(5) NOT NULL,

CONSTRAINT Employee_PK PRIMARY KEY(EmployeeNo

);

Coding-Bootcamps.com

32

Likewise, we can create a Department table, a Project table and an Assignment table using

the CREATE TABLE SQL DDL command as shown in the below example.

In this example, a project table is created with seven fields: ProjectID, ProjectName,

Department, MaxHours, StartDate, and EndDate.

In this last example, an assignment table is created with three fields: ProjectID,

EmployeeNumber, and HoursWorked. The assignment table is used to record who

(EmployeeNumber) and how much time(HoursWorked) an employee worked on the

USE SW

CREATE TABLE PROJECT

(

ProjectID Int NOT NULL IDENTITY (1000,100),

ProjectName Char(50) NOT NULL,

Department Char(35) NOT NULL,

MaxHours Numeric(8,2) NOT NULL DEFAULT 100,

StartDate DateTime NULL,

EndDate DateTime NULL,

CONSTRAINT ASSIGNMENT_PK PRIMARY KEY(ProjectID)

);

USE SW

CREATE TABLE DEPARTMENT

(

DepartmentName Char(35) NOT NULL,

BudgetCode Char(30) NOT NULL,

OfficeNumber Char(15) NOT NULL,

Phone Char(15) NOT NULL,

CONSTRAINT DEPARTMENT_PK PRIMARY KEY(DepartmentName)

);

Coding-Bootcamps.com

33

particular project(ProjectID).

Table Constraints

Table constraints are identified by the CONSTRAINT keyword and can be used to

implement various constraints described below.

IDENTITY constraint

We can use the optional column constraint IDENTITY to provide a unique, incremental

value for that column. Identity columns are often used with the PRIMARY KEY constraints

to serve as the unique row identifier for the table. The IDENTITY property can be assigned

to a column with a tinyint, smallint, int, decimal or numeric data type. This constraint:

 Generates sequential numbers

 Does not enforce entity integrity

 Only one column can have the IDENTITY property

 Must be defined as an integer, numeric or decimal data type

 Cannot update a column with the IDENTITY property

 Cannot contain NULL values

 Cannot bind defaults and default constraints to the column

For IDENTITY[(seed, increment)]

Seed – the initial value of the identity column

Increment – the value to add to the last increment column

We will use another database example to further illustrate the SQL DDL statements by

creating the table tblHotel in this HOTEL database.

USE SW

CREATE TABLE ASSIGNMENT

(

ProjectID Int NOT NULL,

EmployeeNumber Int NOT NULL,

HoursWorked Numeric(6,2) NULL,

);

Coding-Bootcamps.com

34

UNIQUE constraint

The UNIQUE constraint prevents duplicate values from being entered into a column.

 Both PK and UNIQUE constraints are used to enforce entity integrity.

 Multiple UNIQUE constraints can be defined for a table.

 When a UNIQUE constraint is added to an existing table, the existing data is always

validated.

 A UNIQUE constraint can be placed on columns that accept nulls. Only one row can be NULL.

 A UNIQUE constraint automatically creates a unique index on the selected column.

This is the general syntax for the UNIQUE constraint:

This is an example using the UNIQUE constraint.

CREATE TABLE tblHotel

(

HotelNo Int IDENTITY (1,1),

Name Char(50) NOT NULL,

Address Char(50) NULL,

City Char(25) NULL,

)

[CONSTRAINT constraint_name]

UNIQUE [CLUSTERED | NONCLUSTERED]

(col_name [, col_name2 […, col_name16]])

[ON segment_name]

CREATE TABLE EMPLOYEES

(

EmployeeNo CHAR(10) NOT NULL UNIQUE,

)

Coding-Bootcamps.com

35

FOREIGN KEY constraint

 The FOREIGN KEY (FK) constraint defines a column, or combination of columns,

whose values match the PRIMARY KEY (PK) of another table.

 Values in an FK are automatically updated when the PK values in the associated table are

updated/changed.

 FK constraints must reference PK or the UNIQUE constraint of another table.

 The number of columns for FK must be same as PK or UNIQUE constraint.

 If the WITH NOCHECK option is used, the FK constraint will not validate existing data in a

table.

 No index is created on the columns that participate in an FK constraint.

This is the general syntax for the FOREIGN KEY constraint:

In this example, the field HotelNo in the tblRoom table is a FK to the field HotelNo in the

tblHotel table shown previously.

CHECK constraint

[CONSTRAINT constraint_name]

[FOREIGN KEY (col_name [, col_name2 […, col_name16]])]

REFERENCES [owner.]ref_table [(ref_col [, ref_col2 […, ref_col16]])]

USE HOTEL

GO

CREATE TABLE tblRoom

(

HotelNo Int NOT NULL ,

RoomNo Int NOT NULL,

Type Char(50) NULL,

Price Money NULL,

PRIMARY KEY (HotelNo, RoomNo),

FOREIGN KEY (HotelNo) REFERENCES tblHotel

)

Coding-Bootcamps.com

36

The CHECK constraint restricts values that can be entered into a table.

 It can contain search conditions similar to a WHERE clause.

 It can reference columns in the same table.

 The data validation rule for a CHECK constraint must evaluate to a boolean expression.

 It can be defined for a column that has a rule bound to it.

This is the general syntax for the CHECK constraint:

In this example, the Type field is restricted to have only the types ‘Single’, ‘Double’,

‘Suite’ or ‘Executive’.

In this second example, the employee hire date should be before January 1, 2004, or have

a salary limit of $300,000.

[CONSTRAINT constraint_name]

CHECK [NOT FOR REPLICATION] (expression)

USE HOTEL

GO

CREATE TABLE tblRoom

(

HotelNo Int NOT NULL,

RoomNo Int NOT NULL,

Type Char(50) NULL,

Price Money NULL,

PRIMARY KEY (HotelNo, RoomNo),

FOREIGN KEY (HotelNo) REFERENCES tblHotel

CONSTRAINT Valid_Type

CHECK (Type IN (‘Single’, ‘Double’, ‘Suite’, ‘Executive’))

)

Coding-Bootcamps.com

37

DEFAULT constraint

The DEFAULT constraint is used to supply a value that is automatically added for a

column if the user does not supply one.

 A column can have only one DEFAULT.

 The DEFAULT constraint cannot be used on columns with a timestamp data type or identity

property.

 DEFAULT constraints are automatically bound to a column when they are created.

The general syntax for the DEFAULT constraint is:

This example sets the default for the city field to ‘Vancouver’.

GO

CREATE TABLE SALESREPS

(

Empl_num Int Not Null

CHECK (Empl_num BETWEEN 101 and 199),

Name Char (15),

Age Int CHECK (Age >= 21),

Quota Money CHECK (Quota >= 0.0),

HireDate DateTime,

CONSTRAINT QuotaCap CHECK ((HireDate < “01-01-2004”) OR (Quota <=300000))

)

[CONSTRAINT constraint_name]

DEFAULT {constant_expression | niladic-function | NULL}

[FOR col_name]

Coding-Bootcamps.com

38

User Defined Types

User defined types are always based on system-supplied data type. They can enforce data integrity
and they allow nulls.

To create a user-defined data type in SQL Server, choose types under “Programmability” in your
database. Next, right click and choose ‘New’ –>‘User-defined data type’ or execute the sp_addtype
system stored procedure. After this, type:

sp_addtype ssn, ‘varchar(11)’, ‘NOT NULL’

This will add a new user-defined data type called SIN with nine characters.

In this example, the field EmployeeSIN uses the user-defined data type SIN.

CREATE TABLE SINTable
(
EmployeeID INT Primary Key,
EmployeeSIN SIN,
CONSTRAINT CheckSIN
CHECK (EmployeeSIN LIKE
‘ [0-9][0-9][0-9] – [0-9][0-9] [0-9] – [0-9][0-9][0-9] ‘)
)

ALTER TABLE

You can use ALTER TABLE statements to add and drop constraints.

 ALTER TABLE allows columns to be removed.

 When a constraint is added, all existing data are verified for violations.

In this example, we use the ALTER TABLE statement to the IDENTITY property to a

ColumnName field.

USE HOTEL

ALTER TABLE tblHotel

Add CONSTRAINT df_city DEFAULT ‘Vancouver’ FOR City

Coding-Bootcamps.com

39

Use the ALTER TABLE statement to add a column with the IDENTITY property such as

ALTER TABLE TableName.

DROP TABLE

The DROP TABLE will remove a table from the database. Make sure you have the correct database
selected.

DROP TABLE tblHotel

Executing the above SQL DROP TABLE statement will remove the table tblHotel from the database.

Key Terms

DDL: abbreviation for data definition language

DML: abbreviation for data manipulation language

SEQUEL: acronym for Structured English Query Language; designed to manipulate and retrieve data
stored in IBM’s quasi-relational database management system, System R

Structured Query Language (SQL): a database language designed for managing data held in a
relational database management system

Exercises

1. Create the table shown here in SQL Server and show the statements you used.
Table: Employee

ATTRIBUTE (FIELD) NAME DATA DECLARATION

EMP_NUM CHAR(3)

EMP_LNAME VARCHAR(15)

ADD

ColumnName int IDENTITY(seed, increment)

USE HOTEL

GO

ALTER TABLE tblHotel

ADD CONSTRAINT unqName UNIQUE (Name)

Coding-Bootcamps.com

40

EMP_FNAME VARCHAR(15)

EMP_INITIAL CHAR(1)

EMP_HIREDATE DATE

JOB_CODE CHAR(3)

2. Having created the table structure in question 2, write the SQL code to enter the rows for
the table shown in Figure 5.1.

Figure 5.2. Employee table with data for questions 4-10

Use Figure 5.2 to answer questions 4 to 10.

3. Write the SQL code to change the job code to 501 for the person whose personnel number is
107. After you have completed the task, examine the results, and then reset the job code to
its original value.

4. Assuming that the data shown in the Employee table have been entered, write the SQL code
that lists all attributes for a job code of 502.

5. Write the SQL code to delete the row for the person named William Smithfield, who was
hired on June 22, 2004, and whose job code classification is 500. (Hint: Use logical operators
to include all the information given in this problem.)

6. Add the attributes EMP_PCT and PROJ_NUM to the Employee table. The EMP_PCT is the
bonus percentage to be paid to each employee.

7. Using a single command, write the SQL code that will enter the project number (PROJ_NUM)
= 18 for all employees whose job classification (JOB_CODE) is 500.

8. Using a single command, write the SQL code that will enter the project number (PROJ_NUM)
= 25 for all employees whose job classification (JOB_CODE) is 502 or higher.

9. Write the SQL code that will change the PROJ_NUM to 14 for those employees who were
hired before January 1, 1994, and whose job code is at least 501. (You may assume that the
table will be restored to its original condition preceding this question.)

http://opentextbc.ca/dbdesign01/wp-content/uploads/sites/11/2014/03/Ch15-Exercise-Fig15.1.jpg

Coding-Bootcamps.com

41

Session 6

Session 6- SQL Data Manipulation

Language

The SQL data manipulation language (DML) is used to query and modify database data. In this

Session, we will describe how to use the SELECT, INSERT, UPDATE, and DELETE SQL

DML command statements, defined below.

 SELECT – to query data in the database

 INSERT – to insert data into a table

 UPDATE – to update data in a table

 DELETE – to delete data from a table

In the SQL DML statement:

 Each clause in a statement should begin on a new line.

 The beginning of each clause should line up with the beginning of other clauses.

 If a clause has several parts, they should appear on separate lines and be indented under the

start of the clause to show the relationship.

 Upper case letters are used to represent reserved words.

 Lower case letters are used to represent user-defined words.

SELECT Statement

The SELECT statement, or command, allows the user to extract data from tables, based on

specific criteria. It is processed according to the following sequence:

SELECT DISTINCT item(s)

 FROM table(s)

 WHERE predicate

 GROUP BY field(s)

 ORDER BY fields

We can use the SELECT statement to generate an employee phone list from the Employees

table as follows:

Coding-Bootcamps.com

42

This action will display employee’s last name, first name, and phone number from the

Employees table, seen in Table 6.1.

Last Name First Name Phone Number

Hagans Jim 604-232-3232

Wong Bruce 604-244-2322

Table 6.1. Employees table.

In this next example, we will use a Publishers table (Table 6.2). (You will notice that Canada

is mispelled in the Publisher Country field for Example Publishing and ABC Publishing. To

correct mispelling, use the UPDATE statement to standardize the country field to Canada – see

UPDATE statement later in this Session.)

Publisher Name Publisher City Publisher Province Publisher Country

Acme Publishing Vancouver BC Canada

Example Publishing Edmonton AB Cnada

ABC Publishing Toronto ON Canda

Table 6.2. Publishers table.

If you add the publisher’s name and city, you would use the SELECT statement followed by

the fields name separated by a comma:

This action will display the publisher’s name and city from the Publishers table.

If you just want the publisher’s name under the display name city, you would use the

SELECT statement with no comma separating pub_name and city:

SELECT PubName city

FROM Publishers

SELECT FirstName, LastName, phone

FROM Employees

ORDER BY LastName

SELECT PubName, city

FROM Publishers

Coding-Bootcamps.com

43

Performing this action will display only the pub_name from the Publishers table with a “city”

heading. If you do not include the comma, SQL Server assumes you want a new column name

for pub_name.

SELECT statement with WHERE criteria

Sometimes you might want to focus on a portion of the Publishers table, such as only

publishers that are in Vancouver. In this situation, you would use the SELECT statement with

the WHERE criterion, i.e., WHERE city = ‘Vancouver’.

These first two examples illustrate how to limit record selection with the WHERE

criterion using BETWEEN. Each of these examples gives the same results for store items with

between 20 and 50 items in stock.

Example #1 uses the quantity, qty BETWEEN 20 and 50.

Example #2, on the other hand, uses qty >=20 and qty <=50 .

Example #3 illustrates how to limit record selection with the WHERE criterion using NOT

BETWEEN.

The next two examples show two different ways to limit record selection with the WHERE

criterion using IN, with each yielding the same results.

Example #4 shows how to select records using province= as part of the WHERE statement.

SELECT StorID, qty, TitleID

FROM Sales

WHERE qty NOT BETWEEN 20 and 50

SELECT StorID, qty, TitleID

FROM Sales

WHERE qty BETWEEN 20 and 50

SELECT StorID, qty, TitleID

FROM Sales

WHERE qty >= 20 and qty <= 50

Coding-Bootcamps.com

44

Example #5 select records using province IN as part of the WHERE statement.

The final two examples illustrate how NULL and NOT NULL can be used to select records.

For these examples, a Courses table (not shown) would be used that contains fields called Title,

Quantity, and Price (of course). Each publisher has a Courses table that lists all of its courses.

Example #6 uses NULL.

Example #7 uses NOT NULL.

Using wildcards in the LIKE clause

The LIKE keyword selects rows containing fields that match specified portions of character

strings. LIKE is used with char, varchar, text, datetime and smalldatetime data. A

wildcard allows the user to match fields that contain certain letters. For example, the wildcard

province = ‘N%’ would give all provinces that start with the letter ‘N’. Table 6.3 shows four

ways to specify wildcards in the SELECT statement in regular express format.

SELECT *

FROM Publishers

WHERE province = ‘BC’ OR province = ‘AB’ OR province = ‘ON’

SELECT *

FROM Publishers

WHERE province IN (‘BC’, ‘AB’, ‘ON’)

SELECT price, title

FROM Books

WHERE price IS NULL

SELECT price, title

FROM Books

WHERE price IS NOT NULL

Coding-Bootcamps.com

45

% Any string of zero or more characters

_ Any single character

[]
Any single character within the specified range (e.g., [a-f]) or set (e.g.,
[abcdef])

[^]
Any single character not within the specified range (e.g., [^a – f]) or set
(e.g., [^abcdef])

Table 6.3. How to specify wildcards in the SELECT statement

In example #1, LIKE ‘Mc%’ searches for all last names that begin with the letters “Mc” (e.g.,

McBadden).

For example #2: LIKE ‘%inger’ searches for all last names that end with the letters “inger”

(e.g., Ringer, Stringer).

In, example #3: LIKE ‘%en%’ searches for all last names that have the letters “en” (e.g.,

Bennett, Green, McBadden).

SELECT statement with ORDER BY clause

SELECT LastName

FROM Employees

WHERE LastName LIKE ‘%inger’

SELECT LastName

FROM Employees

WHERE LastName LIKE ‘Mc%’

SELECT LastName

FROM Employees

WHERE LastName LIKE ‘%en%’

Coding-Bootcamps.com

46

You use the ORDER BY clause to sort the records in the resulting list. Use ASC to sort

the results in ascending order and DESC to sort the results in descending order.

For example, with ASC:

And with DESC:

SELECT *

FROM Books

ORDER BY type, price DESC

SELECT statement with GROUP BY clause

The GROUP BY clause is used to create one output row per each group and produces

summary values for the selected columns, as shown below.

Here is an example using the above statement.

If the SELECT statement includes a WHERE criterion where price is not null,

SELECT type AS ‘Type’, MIN(price) AS ‘Minimum Price’

FROM Books

WHERE royalty > 10

GROUP BY type

SELECT type

FROM Books

GROUP BY type

SELECT *

FROM Employees

ORDER BY HireDate ASC

Coding-Bootcamps.com

47

then a statement with the GROUP BY clause would look like this:

Using COUNT with GROUP BY

We can use COUNT to tally how many items are in a container. However, if we want to count

different items into separate groups, such as marbles of varying colors, then we would use the

COUNT function with the GROUP BY command.

The below SELECT statement illustrates how to count groups of data using the COUNT

function with the GROUP BY clause.

Using AVG and SUM with GROUP BY

We can use the AVG function to give us the average of any group, and SUM to give the total.

Example #1 uses the AVG FUNCTION with the GROUP BY type.

SELECT COUNT(*)

FROM Books

GROUP BY type

SELECT type AS ‘Type’, MIN(price) AS ‘Minimum Price’

FROM Books

WHERE price is not null

GROUP BY type

SELECT type, price

FROM Books

WHERE price is not null

SELECT AVG(qty)

FROM Books

GROUP BY type

Coding-Bootcamps.com

48

Example #2 uses the SUM function with the GROUP BY type.

Example #3 uses both the AVG and SUM functions with the GROUP BY type in the

SELECT statement.

Restricting rows with HAVING

The HAVING clause can be used to restrict rows. It is similar to the WHERE condition

except HAVING can include the aggregate function; the WHERE cannot do this.

The HAVING clause behaves like the WHERE clause, but is applicable to groups. In this

example, we use the HAVING clause to exclude the groups with the province ‘BC’.

INSERT statement

The INSERT statement adds rows to a table. In addition,

 INSERT specifies the table or view that data will be inserted into.

 Column_list lists columns that will be affected by the INSERT.

 If a column is omitted, each value must be provided.

 If you are including columns, they can be listed in any order.

 VALUES specifies the data that you want to insert into the table. VALUES is required.

SELECT ‘Total Sales’ = SUM(qty), ‘Average Sales’ = AVG(qty), stor_id

FROM Sales

GROUP BY StorID ORDER BY ‘Total Sales’

SELECT SUM(qty)

FROM Books

GROUP BY type

SELECT au_fname AS ‘Author”s First Name’, province as ‘Province’

FROM Authors

GROUP BY au_fname, province

HAVING province <> ‘BC’

Coding-Bootcamps.com

49

 Columns with the IDENTITY property should not be explicitly listed in the column_list or

values_clause.

The syntax for the INSERT statement is:

When inserting rows with the INSERT statement, these rules apply:

 Inserting an empty string (‘ ‘) into a varchar or text column inserts a single space.

 All char columns are right-padded to the defined length.

 All trailing spaces are removed from data inserted into varchar columns, except in strings that

contain only spaces. These strings are truncated to a single space.

 If an INSERT statement violates a constraint, default or rule, or if it is the wrong data type,

the statement fails and SQL Server displays an error message.

When you specify values for only some of the columns in the column_list, one of three things

can happen to the columns that have no values:

1. A default value is entered if the column has a DEFAULT constraint, if a default is bound to the

column, or if a default is bound to the underlying user-defined data type.

2. NULL is entered if the column allows NULLs and no default value exists for the column.

3. An error message is displayed and the row is rejected if the column is defined as NOT NULL and

no default exists.

This example uses INSERT to add a record to the publisher’s Authors table.

This following example illustrates how to insert a partial row into the Publishers table with a

column list. The country column had a default value of Canada so it does not require that you

include it in your values.

To insert rows into a table with an IDENTITY column, follow the below example. Do not

supply the value for the IDENTITY nor the name of the column in the column list.

INSERT INTO Publishers (PubID, PubName, city, province)

VALUES (‘9900’, ‘Acme Publishing’, ‘Vancouver’, ‘BC’)

INSERT [INTO] Table_name | view name [column_list]

DEFAULT VALUES | values_list | select statement

INSERT INTO Authors

VALUES(‘555-093-467’, ‘Martin’, ‘April’, ‘281 555-5673’, ‘816 Market St.,’ , ‘Vancouver’, ‘BC’,

‘V7G3P4’, 0)

Coding-Bootcamps.com

50

Inserting specific values into an IDENTITY column

By default, data cannot be inserted directly into an IDENTITY column; however, if a row is

accidentally deleted, or there are gaps in the IDENTITY column values, you can insert a row and

specify the IDENTITY column value.

IDENTITY_INSERT option

To allow an insert with a specific identity value, the IDENTITY_INSERT option can be used

as follows.

 Inserting rows with a SELECT statement

We can sometimes create a small temporary table from a large table. For this, we can insert

rows with a SELECT statement. When using this command, there is no validation for

uniqueness. Consequently, there may be many rows with the same pub_id in the example below.

This example creates a smaller temporary Publishers table using the CREATE TABLE

statement. Then the INSERT with a SELECT statement is used to add records to this temporary

Publishers table from the publis table.

SET IDENTITY_INSERT jobs ON

INSERT INTO jobs (job_id, job_desc, min_lvl, max_lvl)

VALUES (19, ’DBA2’, 100, 175)

SET IDENTITY_INSERT jobs OFF

INSERT INTO jobs

VALUES (‘DBA’, 100, 175)

Coding-Bootcamps.com

51

In this example, we’re copying a subset of data.

In this example, the publishers’ data are copied to the tmpPublishers table and the country

column is set to Canada.

UPDATE statement

The UPDATE statement changes data in existing rows either by adding new data or

modifying existing data.

This example uses the UPDATE statement to standardize the country field to be Canada for

all records in the Publishers table.

INSERT tmpPublishers (PubID, PubName, city, province, country)

SELECT PubID, PubName, city, province, ‘Canada’

FROM Publishers

CREATE TABLE dbo.tmpPublishers (

PubID char (4) NOT NULL ,

PubName varchar (40) NULL ,

city varchar (20) NULL ,

province char (2) NULL ,

country varchar (30) NULL DEFAULT (‘Canada’)

)

INSERT tmpPublishers

SELECT * FROM Publishers

INSERT tmpPublishers (pub_id, pub_name)

SELECT PubID, PubName

FROM Publishers

Coding-Bootcamps.com

52

This example increases the royalty amount by 10% for those royalty amounts between 10 and

20.

Including subqueries in an UPDATE statement

The employees from the Employees table who were hired by the publisher in 2010 are given a

promotion to the highest job level for their job type. This is what the UPDATE statement would

look like.

DELETE statement

The DELETE statement removes rows from a record set. DELETE names the table or view

that holds the rows that will be deleted and only one table or row may be listed at a time.

WHERE is a standard WHERE clause that limits the deletion to select records.

The DELETE syntax looks like this.

The rules for the DELETE statement are:

1. If you omit a WHERE clause, all rows in the table are removed (except for indexes, the table,

constraints).

DELETE [FROM] {table_name | view_name }

[WHERE clause]

UPDATE roysched

SET royalty = royalty + (royalty * .10)

WHERE royalty BETWEEN 10 and 20

UPDATE Publishers

SET country = ‘Canada’

UPDATE Employees

SET job_lvl =

(SELECT max_lvl FROM jobs

WHERE employee.job_id = jobs.job_id)

WHERE DATEPART(year, employee.hire_date) = 2010

Coding-Bootcamps.com

53

2. DELETE cannot be used with a view that has a FROM clause naming more than one table.

(Delete can affect only one base table at a time.)

What follows are three different DELETE statements that can be used.

1. Deleting all rows from a table.

2. Deleting selected rows:

3. Deleting rows based on a value in a subquery:

Built-in Functions

There are many built-in functions in SQL Server such as:

1. Aggregate: returns summary values

2. Conversion: transforms one data type to another

3. Date: displays information about dates and times

4. Mathematical: performs operations on numeric data

5. String: performs operations on character strings, binary data or expressions

6. System: returns a special piece of information from the database

7. Text and image: performs operations on text and image data

Below you will find detailed descriptions and examples for the first four functions.

Aggregate functions

DELETE

FROM Discounts

DELETE

FROM Sales

WHERE stor_id = ‘6380’

DELETE FROM Sales

WHERE title_id IN

(SELECT title_id FROM Books WHERE type = ‘mod_cook’)

Coding-Bootcamps.com

54

Aggregate functions perform a calculation on a set of values and return a single, or summary,

value. Table 6.4 lists these functions.

FUNCTION DESCRIPTION

AVG Returns the average of all the values, or only the DISTINCT values, in the

expression.

COUNT Returns the number of non-null values in the expression. When DISTINCT is

specified, COUNT finds the number of unique non-null values.

COUNT(*) Returns the number of rows. COUNT(*) takes no parameters and cannot be used

with DISTINCT.

MAX Returns the maximum value in the expression. MAX can be used with numeric,

character and datetime columns, but not with bit columns. With character columns,

MAX finds the highest value in the collating sequence. MAX ignores any null

values.

MIN Returns the minimum value in the expression. MIN can be used with numeric,

character and datetime columns, but not with bit columns. With character columns,

MIN finds the value that is lowest in the sort sequence. MIN ignores any null

values.

SUM Returns the sum of all the values, or only the DISTINCT values, in the expression.

SUM can be used with numeric columns only.

Table 16.4 A list of aggregate functions and descriptions.

Below are examples of each of the aggregate functions listed in Table 6.4.

Example #1: AVG

Example #2: COUNT

Example #3: COUNT

SELECT AVG (price) AS ‘Average Title Price’

FROM Books

SELECT COUNT(PubID) AS ‘Number of Publishers’

FROM Publishers

SELECT COUNT(province) AS ‘Number of Publishers’

FROM Publishers

Coding-Bootcamps.com

55

Example #3: COUNT (*)

Example #4: MAX

Example #5: MIN

Example #6: SUM

Conversion function

The conversion function transforms one data type to another.

In the example below, a price that contains two 9s is converted into five characters. The

syntax for this statement is SELECT ‘The date is ‘ + CONVERT(varchar(12), getdate()).

SELECT COUNT(*)

FROM Employees

WHERE job_lvl = 35

SELECT MAX (HireDate)

FROM Employees

SELECT MIN (price)

FROM Books

SELECT SUM(discount) AS ‘Total Discounts’

FROM Discounts

Coding-Bootcamps.com

56

In this second example, the conversion function changes data to a data type with a different

size.

Date function

The date function produces a date by adding an interval to a specified date. The result is a

datetime value equal to the date plus the number of date parts. If the date parameter is a

smalldatetime value, the result is also a smalldatetime value.

The DATEADD function is used to add and increment date values. The syntax for this

function is DATEADD(datepart, number, date).

In this example, the function DATEDIFF(datepart, date1, date2) is used.

This command returns the number of datepart “boundaries” crossed between two specified

dates. The method of counting crossed boundaries makes the result given by DATEDIFF

consistent across all data types such as minutes, seconds, and milliseconds.

For any particular date, we can examine any part of that date from the year to the millisecond.

SELECT DATEADD(day, 3, hire_date)

FROM Employees

SELECT title_id, CONVERT(char(4), ytd_sales) as ‘Sales’

FROM Books

WHERE type LIKE ‘%cook’

SELECT CONVERT(int, 10.6496)

SELECT title_id, price

FROM Books

WHERE CONVERT(char(5), price) LIKE ‘%99%’

SELECT DATEDIFF(day, HireDate, ‘Nov 30 1995’)

FROM Employees

Coding-Bootcamps.com

57

The date parts (DATEPART) and abbreviations recognized by SQL Server, and the

acceptable values are listed in Table 6.5.

DATE PART ABBREVIATION VALUES

Year yy 1753-9999

Quarter qq 1-4

Month mm 1-12

Day of year dy 1-366

Day dd 1-31

Week wk 1-53

Weekday dw 1-7 (Sun.-Sat.)

Hour hh 0-23

Minute mi 0-59

Second ss 0-59

Millisecond ms 0-999

Table 6.5. Date part abbreviations and values.

Mathematical functions

Mathematical functions perform operations on numeric data. The following example lists the

current price for each course sold by the publisher and what they would be if all prices increased

by 10%.

Joining Tables

Joining two or more tables is the process of comparing the data in specified columns and

using the comparison results to form a new table from the rows that qualify. A join statement:

 Specifies a column from each table

 Compares the values in those columns row by row

 Combines rows with qualifying values into a new row

SELECT Price, (price * 1.1) AS ‘New Price’, title

FROM Books

SELECT ‘Square Root’ = SQRT(81)

SELECT ‘Rounded‘ = ROUND(4567.9876,2)

SELECT FLOOR (123.45)

Coding-Bootcamps.com

58

Although the comparison is usually for equality – values that match exactly – other types of

joins can also be specified. All the different joins such as inner, left (outer), right (outer), and

cross join will be described below.

Inner join

An inner join connects two tables on a column with the same data type. Only the rows where

the column values match are returned; unmatched rows are discarded.

Example #1

Example #2

Left outer join

A left outer join specifies that all left outer rows be returned. All rows from the left table that

did not meet the condition specified are included in the results set, and output columns from the

other table are set to NULL.

This first example uses the new syntax for a left outer join.

SELECT jobs.job_id, job_desc

FROM jobs

INNER JOIN Employees ON employee.job_id = jobs.job_id

WHERE jobs.job_id < 7

SELECT authors.au_fname, authors.au_lname, books.royalty, title

FROM authorsINNER JOIN titleauthor ON authors.au_id=titleauthor.au_id

INNER JOIN books ON titleauthor.title_id=books.title_id

GROUP BY authors.au_lname, authors.au_fname, title, title.royalty

ORDER BY authors.au_lname

Coding-Bootcamps.com

59

This is an example of a left outer join using the old syntax.

Right outer join

A right outer join includes, in its result set, all rows from the right table that did not meet the

condition specified. Output columns that correspond to the other table are set to NULL.

Below is an example using the new syntax for a right outer join.

This second example show the old syntax used for a right outer join.

Full outer join

SELECT publishers.pub_name, books.title

FROM Publishers, Books

WHERE publishers.pub_id *= books.pub_id

SELECT publishers.pub_name, books.title

FROM Publishers

LEFT OUTER JOIN Books On publishers.pub_id = books.pub_id

SELECT titleauthor.title_id, authors.au_lname, authors.au_fname

FROM titleauthor

RIGHT OUTER JOIN authors ON titleauthor.au_id = authors.au_id

ORDERY BY au_lname

SELECT titleauthor.title_id, authors.au_lname, authors.au_fname

FROM titleauthor, authors

WHERE titleauthor.au_id =* authors.au_id

ORDERY BY au_lname

Coding-Bootcamps.com

60

A full outer join specifies that if a row from either table does not match the selection criteria,

the row is included in the result set, and its output columns that correspond to the other table are

set to NULL.

Here is an example of a full outer join.

 Cross join

A cross join is a product combining two tables. This join returns the same rows as if no

WHERE clause were specified. For example:

 Key Terms

aggregate function: returns summary values

ASC: ascending order

conversion function: transforms one data type to another

cross join: a product combining two tables

date function: displays information about dates and times

DELETE statement: removes rows from a record set

DESC: descending order

full outer join: specifies that if a row from either table does not match the selection criteria

GROUP BY: used to create one output row per each group and produces summary values for the
selected columns

SELECT books.title, publishers.pub_name, publishers.province

FROM Publishers

FULL OUTER JOIN Books ON books.pub_id = publishers.pub_id

WHERE (publishers.province <> “BC” and publishers.province <> “ON”)

ORDER BY books.title_id

SELECT au_lname, pub_name,

FROM Authors CROSS JOIN Publishers

Coding-Bootcamps.com

61

inner join: connects two tables on a column with the same data type

INSERT statement: adds rows to a table

left outer join: specifies that all left outer rows be returned

mathematical function: performs operations on numeric data

right outer join: includes all rows from the right table that did not meet the condition specified

SELECT statement: used to query data in the database

string function: performs operations on character strings, binary data or expressions

system function: returns a special piece of information from the database

text and image functions: performs operations on text and image data

UPDATE statement: changes data in existing rows either by adding new data or modifying existing data

wildcard: allows the user to match fields that contain certain letters.

Exercises

For questions 1 to 18 use the PUBS sample database created by Microsoft. To download the script to
generate this database, please download it from your course materials.

1. Display a list of publication dates and titles (books) that were published in 2011.
2. Display a list of titles that have been categorized as either traditional or modern cooking. Use

the Books table.
3. Display all authors whose first names are five letters long.
4. Display from the Books table: type, price, pub_id, title about the books put out by each

publisher. Rename the column type with ”Book Category.” Sort by type (descending) and then
price (ascending).

5. Display title_id, pubdate and pubdate plus three days, using the Books table.
6. Using the datediff and getdate function determine how much time has elapsed in months since

the books in the Books table were published.
7. List the title IDs and quantity of all books that sold more than 30 copies.
8. Display a list of all last names of the authors who live in Ontario (ON) and the cities where they

live.
9. Display all rows that contain a 60 in the payterms field. Use the Sales table.
10. Display all authors whose first names are five letters long , end in O or A, and start with M or P.
11. Display all titles that cost more than $30 and either begin with T or have a publisher ID of 0877.
12. Display from the Employees table the first name (fname), last name (lname), employee

ID(emp_id) and job level (job_lvl) columns for those employees with a job level greater than
200; and rename the column headings to: “First Name,” “Last Name,” “IDENTIFICATION#” and
“Job Level.”

Coding-Bootcamps.com

62

13. Display the royalty, royalty plus 50% as “royalty plus 50” and title_id. Use the Roysched table.
14. Using the STUFF function create a string “12xxxx567” from the string “1234567.”
15. Display the first 40 characters of each title, along with the average monthly sales for that title to

date (ytd_sales/12). Use the Title table.
16. Show how many books have assigned prices.
17. Display a list of cookbooks with the average cost for all of the books of each type. Use the

GROUP BY.

Advanced Questions (Union, Intersect, and Minus)

1. The relational set operators UNION, INTERSECT and MINUS work properly only if the relations
are union-compatible. What does union-compatible mean, and how would you check for this
condition?

2. What is the difference between UNION and UNION ALL? Write the syntax for each.
3. Suppose that you have two tables, Employees and Employees_1. The Employees table contains

the records for three employees: Alice Cordoza, John Cretchakov, and Anne McDonald. The
Employees_1 table contains the records for employees: John Cretchakov and Mary Chen. Given
that information, what is the query output for the UNION query? List the query output.

4. Given the employee information in question 3, what is the query output for the UNION ALL
query? List the query output.

5. Given the employee information in question 3, what is the query output for the INTERSECT
query? List the query output.

6. Given the employee information in question 3, what is the query output for the EXCEPT query?
List the query output.

7. What is a cross join? Give an example of its syntax.
8. Explain these three join types:

1. left outer join
2. right outer join
3. full outer join

9. What is a subquery, and what are its basic characteristics?
10. What is a correlated subquery? Give an example.
11. Suppose that a Product table contains two attributes, PROD_CODE and VEND_CODE. The values

for the PROD_CODE are: ABC, DEF, GHI and JKL. These are matched by the following values for
the VEND_CODE: 125, 124, 124 and 123, respectively (e.g., PROD_CODE value ABC corresponds
to VEND_CODE value 125). The Vendor table contains a single attribute, VEND_CODE, with
values 123, 124, 125 and 126. (The VEND_CODE attribute in the Product table is a foreign key to
the VEND_CODE in the Vendor table.)

12. Given the information in question 11, what would be the query output for the following? Show
values.

1. A UNION query based on these two tables
2. A UNION ALL query based on these two tables
3. An INTERSECT query based on these two tables
4. A MINUS query based on these two tables

Advanced Questions (Using Joins)

1. Display a list of all titles and sales numbers in the Books and Sales tables, including titles that
have no sales. Use a join.

Coding-Bootcamps.com

63

2. Display a list of authors’ last names and all associated titles that each author has published
sorted by the author’s last name. Use a join. Save it as a view named: Published Authors.

3. Using a subquery, display all the authors (show last and first name, postal code) who receive a
royalty of 100% and live in Alberta. Save it as a view titled: AuthorsView. When creating the
view, rename the author’s last name and first name as ‘Last Name’ and ‘First Name’.

4. Display the stores that did not sell the title Is Anger the Enemy?
5. Display a list of store names for sales after 2013 (Order Date is greater than 2013). Display store

name and order date.
6. Display a list of titles for books sold in store name “News & Brews.” Display store name, titles

and order dates.
7. List total sales (qty) by title. Display total quantity and title columns.
8. List total sales (qty) by type. Display total quantity and type columns.
9. List total sales (qty*price) by type. Display total dollar value and type columns.
10. Calculate the total number of types of books by publisher. Show publisher name and total count

of types of books for each publisher.
11. Show publisher names that do not have any type of book. Display publisher name only.

Next Classes
Now that you have successfully finished this Intro to SQL Programming class, you can continue your

journey by taking the below web development or system admin classes:

 Learn PHP Programming

 Web Development with PHP & MySQL

 Intro to HTML and CSS

 Learn Node.JS, Express.JS and MongoDB

 Introduction to Linux OS

Source

This course materials are from Database Design – 2nd Edition book written by Adrienne Watt

https://learn.coding-bootcamps.com/p/learn-php-programming-by-hands-on-examples
https://learn.coding-bootcamps.com/p/learn-php-and-mysql-web-development-by-examples
https://learn.coding-bootcamps.com/p/learn-html-css-html5-and-css3-by-hands-on-examples
https://learn.coding-bootcamps.com/p/learn-node-js-express-js-and-mongodb-by-examples
https://learn.coding-bootcamps.com/p/learn-linux-coding-by-examples-intro-level
https://opentextbc.ca/dbdesign01/

