
Compliance at the Point
of Change

Unlocking developer efficiency in secure and compliant
platforms

Preamble, a short story

3

A Five stage model of the mental activities involved in directed skill acquisition
Dreyfus & Dreyfus, P. 15

Instructor pilots detect errors with greater accuracy than do student
pilots, they are faster at detecting errors than students, and
systematic cross-check patterns did not appear to be employed by
instructor pilots while student pilots appeared to utilize systematic
patterns.

This superior performance obtained despite the fact that the
instructor pilots did not use any detectable scanning pattern.

Dreyfus and Dreyfus
The Scope, Limits, and Training Implications of Three Models
of Aircraft Pilot Emergency Response Behavior

6

“Use rules for novices, intuition for experts.”

 - Andy Hunt, Pragmatic Thinking and Learning

“Having amazing developers who can produce
high-quality code but having a process that
does not enable them to work well will also not
make projects succeed.”

 - Sandro Mancuso, The Software Craftsman

7

DevSecOps &
Compliance Enforcement

Source: https://www.vertiv.com/globalassets/documents/reports/2016-cost-of-data-center-outages-1111_51190_1.pdf

[In regulatory environments], average total cost of
non-compliance is $14.82 million, compared to a $5.47 million

cost of compliance

Ensuring a compliant delivery
of software

9

There are many different stakeholders,
regulatory factors, and technology
standard that need to be met when
releasing software.

How to manage these different
disciplines, contexts, and defining the
requirements of a secure release is a
constant struggle for most
organizations.

 Contractual

Regulatory

OWASP

Identity

Infra

configuration

CVE

Quality

Approval

Provenance

DevSecOps

11

Platform Engineering and DevSecOps are evolving

DevSecOps
Approach

Processes & Structure
● Organizing around value streams
● Product mindset
● Team ‘Ways of Workingʼ
● CI / CD
● Scaling - horizontal and vertical
● Measuring value

Tools & Engineering
● Continuous Integration
● Continuous Testing
● Continuous Deployment
● Continuous Security (e.g. SAST, DAST, Threat

Modelling)
● Continuous Monitoring and Feedback
● Continuous Compliance (both in IT SLDC and

auditable release management)
● Tech Debt Management

People & Culture
● Executive Involvement
● Knowledge sharing
● Continuous Learning
● Customer Centricity
● Collaboration & Transparency
● Career paths
● Performance management

02 01

03

As organisations move to adopt advanced IDP solutions, there is a clear opportunity to improve DevSecOps
practices. However, in a DevSecOps model, people, culture and process are as important as tools and
engineering

12

Key technical building blocks of a successful DevSecOps
ecosystem

Design

Architecture review
Manual Review

Threat Modeling
Using ThreatModeler to auto
generate possible threats

Build

Container Scans
Scanning Docker Container
images for known vulnerabilities

License Violations Scan
Scanning for license violations -
OSC Review

Source Composition Scan
Scanning for vulnerabilities in
OSS libraries

Artifact Management
Managing of the build & binaries
obtained from the pipeline
processes

Static Application Security
Testing SAST
Scanning for code issues

Dynamic Application Security
Testing DAST
Using fuzzing tools to check
common defects at runtime

Test

Application Security PenTesting
Manual application testing to find
security vulnerabilities

Deploy / Monitor

Container Image Scans
Scanning Running Container
images for known vulnerabilities

Interactive Application
Security Testing
Runtime Protection for security
issues

Configuration Review
Identify security misconfigurations

SIEM
Monitor logs and application
activities and alert

Code

Code Review
Application Security code review
performed at the local setup using
IDE plugins

IDE Plugin for License Scan
Scanning for license violations -
OSC Review

IDE Plugin - Code Scan
Scanning for vulnerabilities in
OSS libraries

IDE Plugin - Runtime Scan
Scanning for code issues -
Runtime analysis

Training
Business function specific security
trainings based on tech stack

Pre-commit Secret Scan
A Pre-commit scanning to prevent
secrets getting committed

Static Code Analysis
A code analysis focused towards
improvising code quality

Infrastructure Security Testing
Testing for infrastructure specific
vulnerabilities

Automation Testing
Testing includes Regression Test,
API Test , Contract Test , etc..

13

DevSecOps maturity model

Capabilities
levels

Security Inclusive
Requirements Threat Modelling Static Code

Scanning
Vulnerability

Backlog
Management

Dependency
Management Automated Testing

Novice Security is an afterthought
in feature development.

No threat modelling
is ever performed.

No static code
scanning exists.

No vulnerability
backlog exists.

No dependency
scanning exists.

All testing is performed
manually and by a separate

QA team.

Exploring
Functionality and security
are considered separate

requirements.

A stale/outdated threat
model exists.

No process defined for
improving static code

scanning results.

No process defined for
managing and prioritising
the vulnerability backlog.

No process defined for
remediating vulnerabilities
identified in dependency

scans.

Only functional
automated tests exist.

Emerging
Selected features have
security requirements

specified with functional
requirements.

Threat modelling performed
infrequently independent of

development.

Scanning results are acted
upon when capacity

permits.

Vulnerability backlog is
prioritised on technical

grounds separately from
functional backlog.

Vulnerabilities identified in
dependency scans

remediated when capacity
permits.

Automated security testing
exists but separately from

functional testing.

Growing
All features have security

requirements specified with
functional requirements.

Threat modelling of specific
application/functionality

conducted prior to
development or
maintenance.

Scanners integrated with
CI/CD pipeline and break

builds when certain
thresholds are crossed.

A single prioritised iteration
backlog is prepared with

vulnerability fixes and
features.

Dependency vulnerabilities
are included in the Backlog
and prioritised on the basis

of business impact and
associated risks.

Automated security testing
is part of pre-release

testing.

Leading
Security verification
part of acceptance
criteria of features.

Threat modelling
part of SDLC.

Scanners integrated with
IDEs to allow developers to
fix issues prior to commit.

Thresholds are
progressively raised.

Business impact of
vulnerabilities is determined

and vulnerabilities
prioritised on the basis of
their business impact and

associated risk.

Dev team actively
practices minimalism of
dependencies, removing
unwanted dependencies

and upgrading/patching the
required dependencies to
minimise business risks.

Security issues are
resolved using TDD style
approach by replicating

vulnerabilities at unit and
component test levels and

then remediating them.

14

Automated SBOM Generation
A comprehensive list of all software

components within a container

Software Composition Analysis
Scanning for vulnerabilities in OSS

libraries

Automated DAST
Scanning for code issues - Runtime

analysis

Automated MAST
Scanning for mobile app issues -

Runtime analysis

Automated IaC Scanning
Scanning for security vulnerabilities or

compliance violations

Container Scanning (runtime)
Scanning Running Container images for

known vulnerabilities

Signed commits
Verifies developer committing code is

actually that person

Cloud Security Posture Management
Detect, prevent and remediate cloud

misconfigurations

SBOM Artifact Store
Storage of a comprehensive list of all

SBOMs within your organization

Automated SAST
Scanning for vulnerable libraries,

secrets and license violations

Automated Code Quality Scanning
A code analysis focused towards

improving code quality

Artifact Signing and Verification
Verifies artifacts being used are actually

the ones you created

DevSecOps enables your policy as code engine
DevSecOps capabilities should be available in different ways and formats across different phases
within the SDLC. The data that comes out of these tools is critical input into your policy-as-code or
governance engine when it comes to security, quality, and vulnerability analysis.

Compliance &
Governance

16

The pressure of the development triangle
Engineering leadership and the teams
themselves are under constant pressure
to deliver high quality, compliant
software in the quickest and cheapest
way possible.

With any triangle you only get to choose
two sides. Consciously or
unconsciously, there are decisions being
made that affect the final outcome with
compliance and quality usually being left
behind.

Time to
Value

Compliance
&

Quality

The battle for
application teams

Cost

Common state of governance

17

Release Pipeline

Release Pipeline

MyApp

MyApp

Little or no
governance

checks

SAST

CVE Configuration

CVE

SAST

DAST

QualityCommit

Manual stage
gates

Entire pipeline
managed by another

team

Tightly coupled db,
caches, queues, etc
managed by another

team

Checklist oriented,
tool specific gates

Problems occur late in
the process and are

owned by other teams

These types of patterns are
very common and come with a
troublesome set of problems.

One has little to no governance
while the other is very labor
intensive and can take a long
time to complete.

DevSecOps
Tools

Can you actually prove compliance?

18

Evidence of
Compliance

Compliance work

Most organizations have no shortage of
compliance policies, especially in highly regulated
environments.

How do you actually ensure compliance? It’s
usually yearly training courses along with a bunch
of architectural decision records. These may be
“approved” by manual stage gates in a pipeline or
architectural review board.

Rarely is there actual evidence of compliance at a
meaningful level. For example. validation of
Configuration Requested compared to the
Configuration Performed.

!

19

Governance at the point of change
Governance at the point of change is focused
around leverage a policy-as-code engine that can
provide governance across many areas of the
software development lifecycle. This takes written
policy and makes it enforceable in the real world.

Developer Code
Commit

IaC
Application
Blueprint

Governance

Deploy

Developer

Once

Test
Environment Testing

Old
Environment

New
Environment

End User

Ephemeral
Environment

Switch
environments on
successful tests

Policy-as-code: Gatekeepers

20

Release Pipeline

MyApp
SAST CVE

DAST

QualityCommit

Policy-as-code

Gatekeepers are agents that sit in between
development teams and the a given environment.
They are responsible for taking a set of inputs and
determining if compliance standards are met and if the
deployment should proceed.

Gatekeeper

Compliance
requirements are

enforced here

21

CI/CD PIPELINE myApp

Centralized policies, federated enforcement

cve-scan@0.1.0

Gatekeeper

Security Domain
Team

Commit

Compliance
requirements are

created by responsible
teams

Code Repository Deployment

Feedback is provided
earlier in the process

Point-of-Change
Compliance: Approvals

22

CI/CD
PIPELINE myApp admission controller

to confirm PM

Approvals
Not all approval can be automated or
approved via governance checks,
especially in highly regulated areas.

You can use the gatekeeper to
validate approvals from tools like Jira
or any tool that has an API.

The policies and gatekeeper can also
be used for drive exception
processes for critical updates like
with outages.

Success
Factors

implements

Platforms streamline governance

24

Confirmation of Evidence
from Assessment Before
Deployment

Validation of Configuration
Requested from
Configuration Performed

Deployment Teams Own
Pipeline

Compliance decoupled from
Deployment Teams

Requirements

Office of
Compliance Policy

Repository
defines

audits

com
pliance

data

AppTeam

Provides policies based up
compliance requirements

verifies compliance
constraints

uses

deploys
upon

verification

Container Service

Platform

Governance / Admission Controller

Portal Starter Kit

CI Pipeline

CD Pipeline

ECS
Fargate LambdasEKS

CI PIPELINE

Standardized tooling with a common interface allows for an easy interface for application team and
allows for platform teams to make updates in the background

Signed image in
Artifact

Repository

Unified
PlatformSAST CVE Quality Signing

Platform interface simplifies software delivery
CD PIPELINE

Runtime
Service

Governance

DAST Smoke
Test

Health
Check

Unified Platform Interfaces

Enabling Governance & Compliance
Guardrails should be used to ensure compliance to protect the company as well as
ensuring teams are not subject to audit risk. The paved road and runtime
environment include different checks and balances to ensure that lightweight
governance can be applied in a fully automated manner

Static and
dynamic code
analysis

Code provenance
Security,
governance, and
Policy compliance

Links to agile
workflow systems
and changelogs

Code coverage, license
verification, code
quality, etc all show
that code has been
rigorously tested to
minimize risk

Commits and container
images are
cryptographically signed
to prove all changes are
authorised and have
passed all pipeline checks

Provides assurance that
all applicable policy is
followed to ensure low
security and audit risk of
changes

By having links to user
stories for every change
and automatically
generating changelogs for
every release, separation
of concerns can be
shown for SOX-compliant
orgs

2727

Policy as code engine Safeguards are applied to
enforce required practices

Teams should still test for
security and compliance

Guardrails
enforced at the
point of change

A policy as code engine OPA) is
used as an admission controller.
This same engine is available to
teams for other uses of OPA such
as API authentication

The engine evaluates compliance to
policies before code is allowed to
deploy, ensuring conformance to
guardrails of security, governance,
and policy

Teams should still test for these
concerns as part of the pipeline to
enable fast feedback loops. These
controls should be considered the
final gate

Governance at the
"point of change"

Governance at the "point of change"

28

Metrics to track

The lack of flexibility around how to
evidence controls/compliance resulting in
delays in production deployments

The number and complexity of ticket
requests resulting in slow downs in
software delivery

Low adoption of quality tools resulting in a
higher number of defects or lower quality
of code

Lack of understanding of what controls
are required resulting in delays in
production deployments

Low adoption of security standards /
tooling resulting in higher number of
vulnerabilities

Provisioned pipeline aren't able to be fully
owned resulting in high cycle time for
pipeline collaboration

Time to Hello World
in Prod

Day to onboard

NPS of capabilities
/ products

Cycle time of
collaboration

Adoption rate of
platform services
(security / quality

tools)

Rate of standard
compliance issues

Wait time on blocked
by environment

provisioning / change
(production)

Time spent on
compliance issue

resolution

NPS of standards,
knowledge

management

% breakdown of
existing

high/medium/low
security vulnerabilities

Team Autonomy
Factor (dependencies)

Decrease in time to market

Business Value

Reduction in security risks

Improvement in software
quality

Relevant Hypotheses

The Pattern in Detail

Maintaining Developer Ownership of the Pipeline

30

CI/CD PIPELINE myApp

myAppDB

One of the MOST friction reducing architectural patterns available

CI/CD PIPELINE myApp

The Everyday Context
Provenance
Standards

Vulnerabilities
Quality

Configuration
Data Protection

Cost…

CI/CD PIPELINE myApp

The Everyday Context

CVE
OWASP

style
complexity

attestation

DAST
dynamic application

security testing
SAST

static application
security testing

Approvals

myAppDBConfiguration
Data Protection

Cost of infrastructure

DAST
dynamic application

security testing

CI/CD PIPELINE

CVE
OWASP

Quality

entire pipeline managed by
another team

infrequent and late in the release
process, by another team

Tightly coupled db, caches,
queues, managed by

another team

CAB

external, checklist oriented gates,
by another team

myApp

myAppDB
Provenance

RM

Compliance: The norm
SAST

static application
security testing

Rigorous verification of compliance
An example, the K8s Admission Controller

35

Block Deployment of app
with unaccepted CVE

snyk test --docker myOrg/myImage:SHA2345234 \
 --exclude-base-image-vulns \
 --severity-threshold=low

…remediate

Ex: Remediate Known Package Vulnerabilities

Scan for CVE

violation[{"msg": msg}] {
 container := input_containers[_]
 is_cve(container) # calls remote function to analyze snyk logs
 msg := sprintf("container %v> contains unaccepted CVE
%v>",
 [container.name, container.image])
 }

CI/CD PIPELINE myApp

Orb: cve-scan@0.1.0

Gatekeeper

Security Domain
Team

Point-of-Change Compliance: Code Analysis

Point-of-Change Compliance: Bill of Materials

CI/CD PIPELINE

Artifact: OCI images

myApp

Assess bom and sig
Orb: syft sbom

generation@0.1.0

Security Domain
Team

Point-of-Change Compliance: Approvals

CI/CD PIPELINE myApp admission controller
to confirm PM

Evidence of Compliance Compliance work

Separate the work of compliant delivery
from the verification of being compliant

Compliance at the Point of Change

Other
Considerations

Other considerations - Code Provenance

41

Code provenance is the ability to attest to the origin of any code running in the system. A strategy to accomplish this
is to ensure that any images deployed to the cluster are signed by a cryptographically verifiable key.
Signing should be performed using a known key only after a CICD pipeline completes the build with any needed testing
performed.
This allows an admission controller to validate that any pod is defined using a trusted image, helping to mitigate
injections of unknown origin.

https://github.com/sse-secure-systems/connaisseur

https://github.com/sse-secure-systems/connaisseur

Open Policy Agent / Gatekeeper

42

Here we will use OPA Gatekeeper as our
admission controller

● Open Policy Agent OPA) uses the
REGO language to define policy

● OPA is our policy engine
● OPA can be enabled across the

technology landscape
● Gatekeeper is a runtime that serves

as our policy decision point based on
the OPA policy evaluation

● Policies can include identity
information

● This will ensure that any policy
enforcement is done at the point of
change

https://www.openpolicyagent.org/

Policy
Implementation

43

First we deploy a policy template to the
cluster or agent that serves as the
definition for policies we can create.

Some example policies could be
● Label defined
● Configurations defined (i.e. requests,

limits, etc)
● Containers run as non-root
● Images from trusted repository with

signed cryptography key

44

Block Deployment of app
with unaccepted CVE

snyk test --docker myOrg/myImage:SHA2345234 \
 --exclude-base-image-vulns \
 --severity-threshold=low

Policy: Remediate Known Package Vulnerabilities

Scan for CVE

violation[{"msg": msg}] {
 container := input_containers[_]
 is_cve(container) # calls remote function to analyze snyk logs
 msg := sprintf("container %v> contains unaccepted CVE
%v>",
 [container.name, container.image])
 }

45

Validation of Request &
Create

apiVersion: rds.services.k8s.aws/v1alpha1
kind: DBCluster
metadata:
 name: $DB_CLUSTER_ID
spec:
 engine: aurora-mysql

Policy: Configuration Requirements for MySQL

ResourceRequest

package AuroraResource

const (
 engineMode String =
serverless
)

Further Reading:

46

https://martinfowler.com/articles/devops-compliance.html

https://martinfowler.com/articles/devops-compliance.html

Effective Platform Engineering

● Effective Platform Engineering book by Manning

● MEAP currently out awaiting print version soon

https://livebook.manning.com/

More Information
https://effectiveplatformengineering.com/

