Compliance at the Point
of Change

Unlocking developer efficiency in secure and compliant
platforms

Preamble, a short story

TABLE 1

Skill
Mental
Function HOVICE COMPETENT PROFICIEMNT EXPERT MASTER .
Recollection || Non-gituational Situational Situational Situational | Situational
Recognition Decomposed Decompoyed lroliatic Holistic Hol.istle
Decision Analytical Analytical Analytical Intujitive Intuitive
Awzreness Monitoring Monitoring Monitoring Monitoring Mrsorbed

A Five stage model of the mental activities involved in directed skill acquisition
Dreyfus & Dreyfus, P. 15

Instructor pilots detect errors with greater accuracy than do student
pilots, they are faster at detecting errors than students, and
systematic cross-check patterns did not appear to be employed by
instructor pilots while student pilots appeared to utilize systematic
patterns.

This superior performance obtained despite the fact that the
instructor pilots did not use any detectable scanning pattern.

Dreyfus and Dreyfus
The Scope, Limits, and Training Implications of Three Models
of Aircraft Pilot Emergency Response Behavior

“Use rules for novices, intuition for experts.”

- Andy Hunt, Pragmatic Thinking and Learning

“Having amazing developers who can produce
high-quality code but having a process that
does not enable them to work well will also not
make projects succeed.”

- Sandro Mancuso, The Software Craftsman

DevSecOps &
Compliance Enforcement

[In regulatory environments], average total cost of
non-compliance is $14.82 million, compared to a $5.47 million
cost of compliance

Source: https://www.vertiv.com/globalassets/documents/reports/2016-cost-of-data-center-outages-11-11_51190_1.pdf

Ensuring a compliant delivery

of software @
Regulatory
There are many different stakeholders,
regulatory factors, and technology
standard that need to be met when
releasing software.
configuration

How to manage these different
requirements of a secure release is a
constant struggle for most
. . Approval
organizations. 0

Provenance

disciplines, contexts, and defining the

DevSecOps

Platform Engineering and DevSecOps are evolving

As organisations move to adopt advanced IDP solutions, there is a clear opportunity to improve DevSecOps
practices. However, in a DevSecOps model, people, culture and process are as important as tools and

engineering

People & Culture

Executive Involvement
Knowledge sharing
Continuous Learning
Customer Centricity
Collaboration & Transparency
Career paths

Performance management

DevSecOps

Approach

Processes & Structure

Organizing around value streams
Product mindset

Team ‘Ways of Working’

Cl/CD

Scaling - horizontal and vertical
Measuring value

Tools & Engineering

Continuous Integration

Continuous Testing

Continuous Deployment

Continuous Security (e.g. SAST, DAST, Threat
Modelling)

Continuous Monitoring and Feedback
Continuous Compliance (both in IT SLDC and
auditable release management)

Tech Debt Management

Key technical building blocks of a successful DevSecOps

ecosystem

. Code

TVl Test

%’_:} Deploy / Monitor

Architecture review
Manual Review

Threat Modeling
Using ThreatModeler to auto
generate possible threats

Training
Business function specific security
trainings based on tech stack

Code Review

Application Security code review
performed at the local setup using
IDE plugins

IDE Plugin for License Scan
Scanning for license violations -
OSC Review

IDE Plugin - Code Scan
Scanning for vulnerabilities in
OSS libraries

IDE Plugin - Runtime Scan
Scanning for code issues -
Runtime analysis

Static Code Analysis
A code analysis focused towards
improvising code quality

Pre-commit Secret Scan
A Pre-commit scanning to prevent
secrets getting committed

Container Scans
Scanning Docker Container
images for known vulnerabilities

License Violations Scan
Scanning for license violations -
OSC Review

Source Composition Scan
Scanning for vulnerabilities in
OSS libraries

Artifact Management
Managing of the build & binaries
obtained from the pipeline
processes

Static Application Security
Testing (SAST)
Scanning for code issues

Dynamic Application Security
Testing (DAST)

Using fuzzing tools to check
common defects at runtime

Application Security PenTesting
Manual application testing to find
security vulnerabilities

Infrastructure Security Testing
Testing for infrastructure specific
vulnerabilities

Automation Testing
Testing includes Regression Test,
API Test , Contract Test , etc..

Container Image Scans
Scanning Running Container
images for known vulnerabilities

Interactive Application
Security Testing

Runtime Protection for security
issues

Configuration Review
Identify security misconfigurations

SIEM
Monitor logs and application
activities and alert

12

DevSecOps maturity model

Capabilities
levels

Security Inclusive

Requirements Threat Modelling

Security is an afterthought
in feature development.

No threat modelling
is ever performed.

Functionality and security
are considered separate
requirements.

A stale/outdated threat
model exists.

Selected features have
security requirements
specified with functional
requirements.

Threat modelling performed
infrequently independent of
development.

Threat modelling of specific
application/functionality
conducted prior to
development or
maintenance.

All features have security
requirements specified with
functional requirements.

Security verification
part of acceptance
criteria of features.

Threat modelling

Leading part of SDLC.

Static Code
Scanning

No static code
scanning exists.

No process defined for
improving static code
scanning results.

Scanning results are acted
upon when capacity
permits.

Scanners integrated with
CI/CD pipeline and break
builds when certain
thresholds are crossed.

Scanners integrated with
IDEs to allow developers to
fix issues prior to commit.

Thresholds are
progressively raised.

Vulnerability
Backlog
Management

No vulnerability
backlog exists.

No process defined for
managing and prioritising
the vulnerability backlog.

Vulnerability backlog is
prioritised on technical
grounds separately from
functional backlog.

A single prioritised iteration
backlog is prepared with
vulnerability fixes and
features.

Business impact of
vulnerabilities is determined
and vulnerabilities
prioritised on the basis of
their business impact and
associated risk.

Dependency
Management

No dependency
scanning exists.

No process defined for
remediating vulnerabilities
identified in dependency
scans.

Vulnerabilities identified in
dependency scans
remediated when capacity
permits.

Dependency vulnerabilities
are included in the Backlog
and prioritised on the basis
of business impact and
associated risks.

Dev team actively
practices minimalism of
dependencies, removing
unwanted dependencies

and upgrading/patching the
required dependencies to
minimise business risks.

Automated Testing

All testing is performed
manually and by a separate
QA team.

Only functional
automated tests exist.

Automated security testing
exists but separately from
functional testing.

Automated security testing
is part of pre-release
testing.

Security issues are
resolved using TDD style
approach by replicating
vulnerabilities at unit and
component test levels and
then remediating them.

13

DevSecOps enables your policy as code engine

DevSecOps capabilities should be available in different ways and formats across different phases
within the SDLC. The data that comes out of these tools is critical input into your policy-as-code or
governance engine when it comes to security, quality, and vulnerability analysis.

SBOM Artifact Store Automated SAST Automated Code Quality Scanning Artifact Signing and Verification
Storage of a comprehensive list of all Scanning for vulnerable libraries, A code analysis focused towards Verifies artifacts being used are actually
SBOMs within your organization secrets and license violations improving code quality the ones you created

Automated SBOM Generation Automated DAST Automated laC Scanning Signed commits
A comprehensive list of all software Scanning for code issues - Runtime Scanning for security vulnerabilities or Verifies developer committing code is
components within a container ENENSE compliance violations actually that person

Software Composition Analysis Automated MAST Container Scanning (runtime) Cloud Security Posture Management
Scanning for vulnerabilities in OSS Scanning for mobile app issues - Scanning Running Container images for Detect, prevent and remediate cloud
libraries Runtime analysis known vulnerabilities misconfigurations

Compliance &
Governance

The pressure of the development triangle

Engineering leadership and the teams
themselves are under constant pressure
to deliver high quality, compliant
software in the quickest and cheapest
way possible.

With any triangle you only get to choose
two sides. Consciously or
unconsciously, there are decisions being
made that affect the final outcome with
compliance and quality usually being left
behind.

Compllance

Quallty

Cost

/ 3\

The battle for
application teams

Timeto
Value

DevSecOps

Common state of governance f Teols Liteorno
These types of patterns are SAST CVE Configuration f checks

very common and come with a : @

troublesome set of problems.
MyApp

One has little to no governance -
while the other is very labor : T @
intensive and can take a long Commit SAST CVE Quality MyApp
time to complete. ﬁ,q F‘I,q F‘I,q ﬁq !
N
\ Manual stage / H,q

gates

Tightly coupled db,

caches, queues, etc

managed by another
team

Problems occur late in . . Entire pipeline
the process and are SIS UL managed by another
owned by other teams team

tool specific gates

Can you actually prove compliance?

Most organizations have no shortage of
compliance policies, especially in highly regulated
environments.

How do you actually ensure compliance? It's
usually yearly training courses along with abunch
of architectural decision records. These may be
“approved” by manual stage gates in a pipeline or

architectural review board. |l I
|

: |
Rarely is there actual evidence of compliance at a ‘ l :
| . :
: |
: l

meaningful level. For example. validation of
Configuration Requested compared to the .

. . Evidence of
Configuration Performed. \ Compliance

Governance at the point of change

Governance at the point of change is focused
around leverage a policy-as-code engine that can
provide governance across many areas of the
software development lifecycle. This takes written End User
policy and makes it enforceable in the real world.

Governance

Test . New
Environment Testing Environment

O > p—> m— "> 8—]—>

Developer Code Deploy | /
Commit Switch
Ephemeral environments on
S—
_—
|

X — Do

—

Environment successful tests

‘ Once
A
Developer laC Old
Application Environment

Blueprint

Policy-as-code: Gatekeepers

Gatekeepers are agents that sit in between
development teams and the a given environment.
They are responsible for taking a set of inputs and
determining if compliance standards are met and if the

Compliance
deployment should proceed. requirerF:']ents are

f enforced here

g m) < /T > ‘%u) ()
=5 B, 5 E L
\ Pol§y-as-/code // El

20

Centralized policies, federated enforcement

Code Repository i i Deployment

: m CI/CD PIPELINE) myApp

‘ Gatekeeper
v

__

cve-scan@0.1.0 «.__
Feedback is provided o

earlier in the process fﬂ\ Compliance
Security Domain requirements are
Team created by responsible
teams

21

Point-of-Change
Compliance: Approvals

Not all approval can be automated or
approved via governance checks,
especially in highly regulated areas.

You can use the gatekeeper to
validate approvals from tools like Jira
or any tool that has an API.

The policies and gatekeeper can also
be used for drive exception
processes for critical updates like
with outages.

Approvals

2 EBp

admission controller
to confirm PM

22

Success
Factors

Platforms streamline governance

uses

(o]
(N

Portal Starter Kit verifies compliance
constraints

Cl Pipeline Platform

. Container Service
implements

Governance / Admission Controller

deploys
e Lambdas EJF’O”_
verification

Fargate

Provides policies based up
compliance requirements

Confirmation of Evidence
from Assessment Before
Deployment

Validation of Configuration
Requested from
Configuration Performed

Deployment Teams Own
Pipeline

Compliance decoupled from
Deployment Teams

Platform interface simplifies software delivery

Signed image in
Artifact
Repository

Unified Platform Interfaces

Governance

: — Unified Runtime Smoke Health
Quality Signing Platform Service Test Check

Standardized tooling with a common interface allows for an easy interface for application team and
allows for platform teams to make updates in the background

Enabling Governance & Compliance

Guardrails should be used to ensure compliance to protect the company as well as
ensuring teams are not subject to audit risk. The paved road and runtime
environment include different checks and balances to ensure that lightweight
governance can be applied in a fully automated manner

Static and Security, Links to aqgile
dynamic code Code provenance governance, and workflow systems
analysis Policy compliance and changelogs
Code coverage, license Commits and container Provides assurance that By having links to user
verification, code images are all applicable policy is stories for every change
quality, etc all show cryptographically signed followed to ensure low and automatically

that code has been to prove all changes are security and audit risk of generating changelogs for
rigorously tested to authorised and have changes every release, separation
minimize risk passed all pipeline checks of concerns can be

shown for SOX-compliant
orgs

Guardrails

enforced at the
point of change

Policy as code engine

A policy as code engine (OPA) is
used as an admission controller.
This same engine is available to
teams for other uses of OPA such
as API authentication

£

Safeguards are applied to
enforce required practices

The engine evaluates compliance to
policies before code is allowed to
deploy, ensuring conformance to
guardrails of security, governance,
and policy

/4

— o
-] e
V4

/£

7

Teams should still test for
security and compliance

Teams should still test for these
concerns as part of the pipeline to
enable fast feedback loops. These
controls should be considered the
final gate

27

Governance at the "point of change"

Relevant Hypotheses

The number and complexity of ticket
requests resulting in slow downs in
software delivery

Metrics to track

Time spent on

Time to Hello World compliance issue

in Prod resolution
Low adoption of quality tools resulting in a BuSineSS Value NPS of standards,
higher number of defects or lower quality Day to onboard knowledge

of code - management
Decrease in time to market

Low adoption of security standards / NPS of capabilities Team Autonomy
tooling resulting in higher number of / products Factor (dependencies)
vulnerabilities
Reduction in security risks ;

& Cyﬁ'i“m? of % breakdown of
The lack of flexibility around how to Governance at the collaboration existing
evidenge controls/compliance resulting in "point of change" high/medium/low
delays in production deployments security vulnerabilities

Improvement in software Rl @y s

. compliance issues
) quality

Lack of understanding of what controls

are required resulting in delays in

production deployments

Wait time on blocked
by environment
provisioning / change
(production)

Adoption rate of
platform services
(security / quality

tool
Provisioned pipeline aren't able to be fully 0ols)

owned resulting in high cycle time for
pipeline collaboration

28

The Pattern in Detail

Maintaining Developer Ownership of the Pipeline

One of the MOST friction reducing architectural patterns available

O\
¢ oo

myApp

W MYAPPDB
L

The Everyday Context

52

\/

w ¢

CIl/CD PIPELINE

myApp

The Everyday Context

DAST
SAST dynamic application
static application security testing

security testing
Approvals

o

AN see
- CIl/CD PIPELINE myApp
OWASP Cost of infrastructure
CVE :
style attestation
complexity Configuration s MyAPpDB

Data Protection _—_—

Compliance: The norm

SAST .] DAST
static application infrequent angl late n;]the release dynamp apphc_atlon
SeCUrity testing process, oy another team Secunty tes“ng
external, checklist oriented gates,
by another team
CAB

another team

mn O
entire pipeline managed by @ ‘

CI/CD PIPELINE ‘ myApp

OWASP
\

CVE

Provenance Quality B

N yAPPDB
A

-_——
Tightly coupled db, caches,

queues, managed by
another team

Rigorous verification of compliance

An example, the K8s Admission Controller

.
,
’
’
’
1
[
'
'

Validating Admission Controller =~ ETCD persistence

. Object \alidation @ >

A

kubectl apply -f deployment. yaml

Admission

; Admission P

: Review

! Response
; \ 4

Webhook Logic

Ex: Remediate Known Package Vulnerabilities

Block Deployment of app

£
w

\) . Wwith unaccepted CVE |
snyk test --docker myOrg/mylmage:SHA2345234 \ violation[{"msg": msg}] {
--exclude-base-image-vulns \ container := input_containers[_]
--severity-threshold=low is_cve(container) # calls remote function to analyze snyk logs
msg := sprintf("container <%v> contains unaccepted CVE
...remediate <%v>",

[container.name, container.image])

}

Point-of-Change Compliance: Code Analysis

3 CI/CD PIPELINE). myApp

__

b

Security Domain
Team

Point-of-Change Compliance: Bill of Materials

Artifact: OCl images

O
ﬁ ® CI/CD PIPELINE myApp

I

Assess bom and sig

Orb: syft sbom
generation@0.1.0 «-__

o

I\

m a7 Security Domain
Team

Watery

Point-of-Change Compliance: Approvals

T Jira

o ay

cve
- » CI/CD PIPELINE myAi‘p admission controller

to confirm PM

Compliance at the Point of Change

Separate the work of compliant delivery
from the verification of being compliant

Other
Considerations

Other considerations - Code Provenance

Code provenance is the ability to attest to the origin of any code running in the system. A strategy to accomplish this
is to ensure that any images deployed to the cluster are signed by a cryptographically verifiable key.
Signing should be performed using a known key only after a CICD pipeline completes the build with any needed testing

performed.
This allows an admission controller to validate that any pod is defined using a trusted image, helping to mitigate

injections of unknown origin.

Code Repository CI/CD Pipeline Kubernetes Cluster

Source Code

Dockerfile | | Image Registry l B Pods &

g—»/‘-o»CIZ_@./I‘_Qr @ ?}QD

| Container Corsginer
Documentation| Build i Image Image

o

Use Signatures for:

= Integrity
= Provenance

41

https://qithub.com/sse-secure-systems/connaisseur

https://github.com/sse-secure-systems/connaisseur

Open Policy Agent / Gatekeeper

Here we will use OPA Gatekeeper as our
admission controller

Open Policy Agent (OPA) uses the

REGO language to define policy
OPA is our policy engine

OPA can be enabled across the
technology landscape

Gatekeeper is a runtime that serves
as our policy decision point based on
the OPA policy evaluation

Policies can include identity
information

This will ensure that any policy
enforcement is done at the point of
change

Policy-based control for cloud native environments

Flexible, fine-grained control for administrators across the stack

42

https://www.openpolicyagent.org/

[J
POllC api sion: templates.gatekeeper.sh/vlibetal
o traintTemplate
[]
Implementatlon e

First we deploy a policy template to the

cluster or agent that serves as the S e
definition for policies we can create. a0l (i atet

Some example policies could be
e Label defined
e Configurations defined (i.e. requests,
limits, etc)
e Containers run as non-root

": missing}}] {

e Images from trusted repository with N e
sighed cryptography key : label | 1z e

, [missingl)

Policy: Remediate Known Package Vulnerabilities

Block Deployment of app

£
w

\) . Wwith unaccepted CVE |
snyk test --docker myOrg/mylmage:SHA2345234 \ violation[{"msg": msg}] {
--exclude-base-image-vulns \ container := input_containers[_]
--severity-threshold=low is_cve(container) # calls remote function to analyze snyk logs
msg := sprintf("container <%v> contains unaccepted CVE
<%v>",

[container.name, container.image])

}

Policy: Configuration Requirements for MySQL

ResourceRequest E : Validation of Request &
! : Create
apiVersion: rds.services.k8s.aws/vlalphal package AuroraResource
kind: DBCluster
metadata: const (
name: $DB_CLUSTER_ID engineMode String =
spec: serverless

engine: aurora-mysq|l)

Further Reading:

https://martinfowler.com/articles/devops-compliance.html

46

https://martinfowler.com/articles/devops-compliance.html

Effective Platform Engineering

o Effective Platform Engineering book by Manning

e MEAP currently out awaiting print version soon

https://livebook.manning.com/

More Information

https://effectiveplatformengineering.com/

Effective Platform Engineering

ﬁ

@ <

Ajay Cl Nic C Bryan Oliver Sean Alvarez

Doe Doe HDoe OO

“Effective Platform Engineering" is a ive guide that i platform engineering as a discipline, focusing on creating
developer platforms that enhance tea eficency and srearmine appication deployment. The book provldes practical insights into
designing and managing platforms that bridge the gap between asks the
software development lifecycle. Readers will learn to build internal developer p\aﬁorms and portals, ensurlng seamless adoption and
satisfaction among teams. The authors emphasize the importance of secure, scalable Kubernetes-based engineering platforms and
offer strategles for mplementing efective Service Level Objectives to boost trust and adaption. Additonally the book explores

cutting-edge Al tools to enh per p providing readers with the knowledge to leverage
the latest advancements in code generation.
Through practical examples and real-world scenarios, *Effective Platform Engineering" how platform engineering differs

from traditional DevOps and the unique value it brings to organizations. The book delves into both patterns and anti-patterns of
platform development, guiding readers in designing and deploying secure, scalable, and observable engineering platforms. With the
inclusion of diagrams, code samples, and exercises, readers can visualize key concepts and solidify their understanding. This resource
is tailored for DevOp: familiar with cloud and i de, aiming to equip them with
the skills to establish platforms that reduce workloads, improve consistency, and accelerate software delivery.

Discover how platform engineering is onizing the developer experience and ional efficiency. Learn more

