
Impact of GenAI and LLMs in
Platform Engineering

A Peek Into the Future of Platform Engineering

What We’ll Cover?

● Context of AI in Platform Engineering

● Measuring improvements in platform engineering through AI

methodologies

● How to improve developer experience through Generative AI

● How is Generative AI improving the observability space?

● What is Agentic AI and how does it impact platform engineering?

How We’ll Cover?

● Talk about key concepts

● Look at the tools landscape

● Dive deeper into some tools

Will be switching back-and-forth between concepts and various tools that

are coming up in the industry that has made these concepts more real

Context of AI in Platform Engineering

Augment Platform Engineering with AI to create a
self-healing, adaptive platform that improves DevEx
autonomously

DIY DevOps → Standardized IDPs → Self-Service → AI-Augmented → Agentic Platforms

Evolution of AI in Platform Engineering

DIY DevOps → Standardized IDPs →

Self-Service → AI-Augmented →

Agentic Platforms

Key Themes in Thoughtworks
Tech Radar

● AI-powered, in-IDE “agentic” coding tools (Cursor, Cline, Windsurf, Claude Code) enable chat-driven
prompt-to-code workflows—navigating code, running commands, addressing errors—under
developer oversight.
Highlight: this is not full automation—human supervision remains essential to ensure quality and
prevent complacency.

● Observability is expanding to cover LLM & AI performance, with tools like Weights & Biases Weave,
Arize Phoenix, Helicone, and HumanLoop.

● RAG remains central for effective GenAI workflows. Variants include Corrective-RAG, Fusion-RAG,
Self-RAG, and graph‑based retrieval (FastGraphRAG).

● Focus shifts from raw volume to rich, unstructured data management—especially for AI-ready
systems.

Shift in Developer Landscape

Developer Role
Operator → Supervisor

Reactive → Proactive Generic → Personalize Inferred → Autonomous

How is the evolution happening?

“Companies using AI to enhance developer experience
report up to a 35% improvement in developer
productivity and a 20–30% reduction in time to
deploy software.” (McKinsey 2023)

“The future of platform engineering is not just
self-service—it’s self-evolving. AI-powered platforms
that learn from developer behavior will define the next
wave of enterprise software delivery.” (Forrester 2024)

Scope of AI in Platform Engineering

Gen AI (and related) hype
Vibe Coding AI-driven development where natural language prompts generate

code.

Devin An AI software engineer capable of autonomously completing
development tasks.

Cursor An AI-enhanced code editor integrating LLMs for real-time coding
assistance.

Sweep An AI tool that automates codebase maintenance and bug fixes.

Windsurf A free AI-powered code completion tool supporting multiple
programming languages.

RAG Technique combining external data retrieval with AI-generated
responses for context-aware coding.

AutoDev Agents Autonomous AI agents managing end-to-end software development
processes.

AI Code Review Automated code review systems utilizing AI to detect issues and
suggest improvements.

MCP A standardized way for AI agents to interact with external data
sources and tools

AI CI/CD Pipelines Integration of AI in Continuous Integration/Continuous Deployment
for automated software delivery.

Developer Pain Points

Aspect Pre-Platform Engineering Platform Engineering AI-Augmented Platforms

Tooling DIY Toolchain Assembly Standardized Toolchains (IDPs) Embedded Intelligent Agents (Proactive Helpers)

Ops Model Ticket-based Ops (manual) Self-Service Portals (partial) Contextual, Autonomous Workflows (intent-based)

Feedback Late, Manual, Error-Prone Faster CI/CD Feedback, but
disconnected

Instant Feedback Loops with Explainability (AI
Observability)

Cognitive Load High: developers manage infra details Medium: golden paths help reduce
burden

Low: Agents reduce toil and complexity dynamically

Toil and Reactive
Work

Frequent firefighting, manual
debugging

Some automation, alerting systems Self-healing agents, proactive remediation

Sense of Impact Poor: disconnection from business
outcomes

Medium: metrics dashboards
accessible

High: platforms surface business value of dev work (OKRs
tied to pipelines)

Developer
Experience

Frustrating, disjointed Improved, but still fragmented Flow State first, collaborative human+agent experience

Tools Landscape

https://landscape.ainativedev.io/

METR Study in July 2025

https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/
https://newsletter.getdx.com/p/metr-study-on-how-ai-affects-developer-productivity

https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/
https://newsletter.getdx.com/p/metr-study-on-how-ai-affects-developer-productivity

Measuring improvements in platform

engineering through AI methodologies

Evolving Metrics with AI in Platform Engineering

● Move beyond DORA/SPACE: AI enables

context-aware, continuous

measurement.

● Use AI/ML to correlate productivity

signals with operational data (e.g., CI/CD

logs + developer sentiment).

● AI-based time-series clustering helps

detect anomalies in flow metrics across

teams or domains.

● Predictive analytics: Forecast developer

bottlenecks before they escalate.

AI Powered Measurement Techniques

● Embedding feedback loops via AI agents to track developer satisfaction (e.g., nudges,

micro-surveys).

● RAG pipelines (Retrieval-Augmented Generation) help summarize platform telemetry and

adoption data.

● NLP techniques to analyze developer tickets, platform docs, and Slack threads for friction

patterns.

● Use reinforcement learning models to simulate policy impact on performance (e.g., golden

path optimization).

AI Driven SDLC

A Metrics Matrix - DORA

Category Traditional
DevOps Metric

AI-Augmented Signal How AI Adds Value

Delivery
Performance

Lead Time for
Changes

Predicted Lead Time (based on PR size,
sentiment, workload history)

Predict delays before they happen
using time-series forecasting

Deployment
Frequency

Adaptive Deployment Cadence Adjusted based on inferred team
stress, test coverage, and feature
risk

Reliability Change Failure
Rate

Contextual CFR by Domain, Developer
Persona, Time of Day

Cluster-based breakdowns,
pattern detection in test/log
failures

MTTR (Mean
Time to
Recovery)

RCA Latency, Alert-to-Action Time,
MTTR Forecasting

LLM-assisted RCA and root cause
suggestions via incident
summaries

A Metrics Matrix - Other Leading & Lagging
Category Traditional DevOps

Metric
AI-Augmented Signal How AI Adds Value

Quality Bug Count, Test Coverage Anomaly Detection in Test Flakiness, Predictive
Defect Hotspots

AI flags brittle test patterns or bug-prone code
via embeddings

Developer
Productivity

PR Cycle Time, Commit
Volume

Friction Index (based on review churn, rework,
sentiment)

NLP on PR comments + ticket threads +
velocity metrics

Developer
Experience

Survey-based NPS or
satisfaction scores

Real-time DevEx Score (via agent prompts, workflow
lag, behavioral patterns)

Embedded micro-surveys + telemetry
inference using GenAI agents

Operational
Efficiency

Ticket Volume / SLA Task Automation Rate, AI Intervention Effectiveness % of tasks handled autonomously; learning
loops from past interventions

Observability Alert Count, SLO
Violations

Narrative-based Alert Summaries, Failure Pattern
Clustering, Predictive Incident Models

Reduce noise, surface actionable signals with
GenAI summarization

Security Vulnerability Scan Results Contextual Risk Score + Auto-Remediation
Suggestions

LLM-assisted interpretation of security
findings

Cost Governance Monthly Cloud Spend
Reports

Real-time Cost Efficiency Score by Team/Service AI-driven recommendations to optimize cost
per deploy/unit/test

CoPilot Adoption is suboptimal

https://www.youtube.com/watch?v=Wuxuy5Ua_Ag

How to improve developer

experience through Generative AI

GenAI for Frictionless DevEx

● GenAI copilots offer personalized guidance across onboarding, CI/CD config, and

environment setup.

● Inline code explanation and remediation (via IDE-integrated LLMs) reduce cognitive

load.

● Natural language interfaces to developer portals and documentation make platforms

more discoverable.

● Context-aware recommendations based on team/project history.

Platform Embedding and GenAI Fusion

● Use LLMs + vector embeddings to build semantic search across platform services and

infra policies.

● Automate environment provisioning using prompts (e.g., “Create a staging env with

Kafka + Redis”).

● Intelligent platform feedback: AI agents suggest faster workflows based on past

usage patterns.

● Developer telemetry + LLM summarization = on-demand insights into developer pain

points

Example: Pulumi CoPilot

https://www.youtube.com/watch?v=m4kb2k_chyM

Example: Robusta RCA

https://home.robusta.dev/

How is Generative AI improving the

observability space?

AI-Enhanced Observability Patterns

● GenAI summarization reduces alert fatigue by transforming logs/traces into

actionable narratives.

● Detecting unseen failure patterns via LLM-powered anomaly detection and log

clustering.

● Root cause analysis (RCA) through prompt-based investigation: “Why did checkout

fail at 3AM?”

● Auto generated incident reports via RAG workflows trained on runbooks + prior

incidents.

Impact on Observability Tools

Closing the Loop with AI in Observability

● Event correlation: LLM agents group related alerts across systems and suggest

resolutions.

● LLMs offer plain-language dashboards, lowering observability complexity for

non-experts.

● Prometheus/Grafana integrations with chat-based GenAI assistants for deeper

queries.

● Continuous training from production data to evolve observability agents' accuracy

over time.

RAG with prompting

Automating Software Operations using
Resolve.ai

https://www.youtube.com/watch?v=bwd2Vy14KNI

Agents to do what you need in PE Space

https://www.youtube.com/watch?v=sIgI5Owgeik

What is Agentic AI and how does it

impact platform engineering?

A Notional Architecture

Developer Zone

Platform Zone

AI Zone

Data Zone

Required by

Improves

Requires

DevPortal IDE

Observability Orchestration CI/CD Cloud Infra

Agentic MCP

Repo

RAG

JIRA Docs

Defining Agentic AI in Platform Context

● Agentic AI = autonomous systems that perceive, reason, and act with a goal-oriented

approach.

● Unlike static GenAI, agentic systems evolve workflows (e.g., tune CI pipelines, suggest

infra shifts).

● Examples in platform engineering: infra remediation bots, proactive security

hardening agents.

● Builds on RLHF (Reinforcement Learning with Human Feedback) to improve decision

quality over time.

Impact on Platform Engineering Operating
Model

● Platform teams shift from scripting tools to designing agent ecosystems.

● Facilitates intent-based interfaces: e.g., “Optimize cost for this app while maintaining SLOs.”

● Encourages composability: Agents can interact (DevEx agent ↔ Cost Optimizer agent).

● Supports “Platform as a Brain” vision—autonomous agents that evolve platforms without manual

config.

Agentic AI with Engineering Platform
Use Case With Engineering Platform With EP + Agentic AI

Fixing Production Issues ● Resources provisioned with platform
capabilities manually

● Logs, metrics and incident workflows
available from the platform

● Agents proactively detect,
diagnose, and resolve issues

● Fixes are applied, tested and
deployed autonomously

Pipeline Optimization ● Standard pipelines reduce variability
● Manual interventions are needed for test

optimizations and rollbacks

● Dynamically optimize test
execution, deployment strategies
and auto-trigger rollbacks

Observability & Incident
Response

● Correlates logs, metrics and traces
automatically

● Manual analysis and actions needed

● Predictive anomaly detection
prevents incidents before they
occur

● Agents autonomously remediate
issues and alerts

Cost & Governance Automation ● Cost reports and compliance policies are
generated from pipelines

● Remediation requires additional
manual/automated approaches

● Continuously optimizes resource
allocation in realtime

● Security policies are
autonomously enforced

Agentic AI to help create PRD

● We will use a tool called chatprd.ai for demonstration purposes

http://chatprd.ai

Agentic AI to help create PRD
● Step # 1: Initial Prompt

Agentic AI to help create PRD
Step # 2: Refine with specifics

Agentic AI to help create PRD
Step # 3: Generate the PRD

https://docs.google.com/document/d/10MQsu3riPfcB9CutHa0qT4IpGD_vCoWu/edit

AI Transformation Summary Tools

https://www.youtube.com/watch?v=LDLeFk591TE

Keys to adoption

● Align to Developer Value Streams
○ Not random bots - align to build/deploy/troubleshoot/test flows

● Optimize for flow not features
○ Focus on seamlessness: IDE/Dev Portals embedded agents > dashboards

● Make agents collaborative not controlling
○ Agents propose, humans validate — human-in-the-loop.

● Observability and guardrails by default
○ LLM Observability, Trust Layers (Citations, RAG telemetry)

● Measure business impact, not model metrics
○ MTTR, Deployment Frequency, Dev Satisfaction – not just LLM accuracy.

Effective Platform Engineering

● Effective Platform Engineering book by Manning
● MEAP currently out awaiting print version soon

https://livebook.manning.com/

More Information
https://effectiveplatformengineering.com/

