Impact of GenAland LLMs in
Platform Engineering

A Peek Into the Future of Platform Engineering

What We’ll Cover?

Context of Al in Platform Engineering

Measuring improvements in platform engineering through Al
methodologies

How to improve developer experience through Generative Al
How is Generative Al improving the observability space?

What is Agentic Al and how does it impact platform engineering?

How We’ll Cover?

e Talkabout key concepts
e Lookatthetoolslandscape

e Divedeeperinto sometools

Will be switching back-and-forth between concepts and various tools that

are coming up in the industry that has made these concepts more real

Context of Al in Platform Engineering

Augment Platform Engineering with Al to create a

self-healing, adaptive platform that improves DevEx
autonomously

DIY DevOps — Standardized IDPs — Self-Service — Al-Augmented — Agentic Platforms

Evolution of Al in Platform Engineering

DIY DevOps — Standardized IDPs —
Self-Service — Al-Augmented —

Agentic Platforms

Key Themes in Thoughtworks
Tech Radar

Al-powered, in-IDE “agentic” coding tools (Cursor, Cline, Windsurf, Claude Code) enable chat-driven
prompt-to-code workflows—navigating code, running commands, addressing errors—under
developer oversight.

Highlight: this is not full automation—human supervision remains essential to ensure quality and
prevent complacency.

Observability is expanding to cover LLM & Al performance, with tools like Weights & Biases Weave,
Arize Phoenix, Helicone, and HumanLoop.

RAG remains central for effective GenAl workflows. Variants include Corrective-RAG, Fusion-RAG,
Self-RAG, and graph-based retrieval (FastGraphRAG).

Focus shifts from raw volume to rich, unstructured data management—especially for Al-ready
systems.

Shift in Developer Landscape

O

Developer Role
Operator — Supervisor

-

(&

(—

)

o

3

Reactive — Proactive

Generic — Personalize

Inferred — Autonomous

How is the evolution happening?

Old Developer New Al-Augmented
Workflow Workflow

%

‘ % ‘ Yy N
" Manual ,& tomated a
N~ N

« . — .
“Companies using Al to enhance developer experience The futqre of‘p’Iatform engineering Is et Leie
self-service—it’s self-evolving. Al-powered platforms

% i i |
e TIPICYO SRt CoRE Opok that learn from developer behavior will define the next

> o, s L
5:;?:; ;:‘J’flgv::;l f’} (2& Cii(:é:el;ezdgg;on intime to wave of enterprise software delivery.” (Forrester 2024)

Scope of Al in Platform Engineering

Consistent design Focused Test Predictive monitoring to
techniques Generation generative healing
> Plan >> Design >> Develop >> Test >> Deploy >>Maintam>
Congestion A . Pipeline code
Management Quick Prototyping generation

Figure 11.1 Focus Areas for Generative Al in Platform Strategy. This is a rapidly
evolving space, and focus areas should be identified using the same product

strategies discussed throughout this chapter.

Gen Al (and related) hype

Vibe Coding Al-driven development where natural language prompts generate

code.
DEV OPS Devin An Al software engineer capable of autonomously completing
m development tasks.

Cursor An Al-enhanced code editor integrating LLMs for real-time coding
assistance.

Sweep An Al tool that automates codebase maintenance and bug fixes.

Windsurf A free Al-powered code completion tool supporting multiple

programming languages.

RAG Technique combining external data retrieval with Al-generated
responses for context-aware coding.

AutoDev Agents Autonomous Al agents managing end-to-end software development
processes.

Al Code Review Automated code review systems utilizing Al to detect issues and
suggest improvements.

b} MCP A standardized way for Al agents to interact with external data

sources and tools

Al CI/CD Pipelines Integration of Alin Continuous Integration/Continuous Deployment
for automated software delivery.

Developer Pain Points

Aspect Pre-Platform Engineering Platform Engineering Al-Augmented Platforms

Tooling DIY Toolchain Assembly Standardized Toolchains (IDPs) Embedded Intelligent Agents (Proactive Helpers)

Ops Model Ticket-based Ops (manual) Self-Service Portals (partial) Contextual, Autonomous Workflows (intent-based)

Feedback Late, Manual, Error-Prone Faster CI/CD Feedback, but Instant Feedback Loops with Explainability (Al
disconnected Observability)

Cognitive Load High: developers manage infra details ~ Medium: golden paths help reduce Low: Agents reduce toil and complexity dynamically
burden

Toil and Reactive Frequent firefighting, manual Some automation, alerting systems Self-healing agents, proactive remediation

Work debugging

Sense of Impact Poor: disconnection from business Medium: metrics dashboards High: platforms surface business value of dev work (OKRs

outcomes accessible tied to pipelines)
Developer Frustrating, disjointed Improved, but still fragmented Flow State first, collaborative human+agent experience

Experience

ools Landscape

AINatiVeDeZ) Home News Podcast About Landscape AINDCon2025

Landscape

4 July

Your Guide to the AL Development Ecosystem

° Show all (Q Autonomous Agent) @ Browser) (. Code)(Code Benchmark> (0 Compliance) i Grid [Catalog t
Design (DevOps) (® DevSecOps) (@ Documentation) ([] Editor)(@ Execution Sandbox) (Frontend & Mobile) (Q Search)

(Gateway> C. Infrastructure As Code) (0 Migration) C. Model) (Nocode) C. Observabylity)
(0 onduct)(. Prompting) CQ Prototyping) (. Quality Assuvance) (. Requivements)(Review)
® Spec Driven (Terminal) (Testing) (Verified) (Vuln Scanning)

)

® Product o}
Requirements Design Nocode
;)| »
0O 0 3 &) B3 O - S & ®
AISPEC CARROT CHAT PRD cLouo BUILDER LOCOFY ANIMA CHORDIO ARDOR CHEF CREATEMVP DALTON
ARCHITECT.
” c O ® 7 — 7
. ; b m oo o f u o
CODEGUIDE CREATEMVP DELIBR DOCUOPIA CLONE UI CODE DESIGN2CODE FIG4AI DATA FLUTTERFLOW FRAMER Jo
BUTTON
(<~
Show more iy Ll Show more
) 8
FULL STACK LUNA AI PRODUCT (s FIGMA.AI GALILEO VISILY KEAK LEAP LEAPTER tel

ROADMAP MONKEY

Pentabimina

https://landscape.ainativedev.io/

METR Study in July 2025

Average Percentage of Time Spent per Activity Among
Labelled Screen Recordings
40%

- mm Al-disallowed (N=30) Factors likely to contribute to slowdown
g 35% = Al-allowed (N=44)
& Factor Type Relevant Observations
) %%
,g % Over-optimism about Al usefulness X o Developers forecast Al will decrease implementation time by 24%
5 25% (C.1.1) ® Dx pers post hoc Al ion time by 20%
‘87 High developer familiarity with reposito- & ® Developers slowed down more on issues they are more familiar with
[20% ries (C.1.2) ® Developers report that their experience makes it difficult for Al to help them
- @ Developers average 5 years experi and 1,500 its on itorie:
O 15%
2 Large and complex repositories (C.1.3) @ ® Developers report Al performs worse in large and complex environments
o 10% ® Repositories average 10 years old with >1,100,000 lines of code
o
g 5% Low Al reliability (C.1.4) @ ® Developers accept <44% of Al generations
<>(® Majority report making major changes to clean up Al code
0% ® 9% of time spent reviewing/cleaning Al outputs
rﬁ%ﬁmﬁ? pm"ﬂ“ng Vﬁl‘}i}g ::5::,59 ?S:f’c'ﬁﬁg dzﬁggfg env;g;?‘nem ovf;‘,'ﬁe/ad Implicit repository context (C.1.5) ®Ba @ Developers report Al doesn’t utilize important tacit knowledge or context

Using Al meant less time spent coding, but the work took
longer, overall. Source: METR

Developers are over optimistic in their estimates about Al's
productivity impact — initially, at least. From the survey:

“Both experts and developers drastically overestimate the usefulness of
Al on developer productivity, even after they have spent many hours
using the tools. This underscores the importance of conducting field
experiments with robust outcome measures, compared to relying solely

on expert forecasts or developer surveys.”

https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/
https://newsletter.getdx.com/p/metr-study-on-how-ai-affects-developer-productivity

Measuring improvements in platform

engineering through Al methodologies

Evolving Metrics with Al in Platform Engineering

e Move beyond DORA/SPACE: Al enables

context-aware, continuous Do Get better
at getting
measurement. bettor

dora.dev

e Use Al/ML to correlate productivity
signals with operational data (e.g., CI/CD

logs + developer sentiment).
e Al-basedtime-series clustering helps
detect anomalies in flow metrics across

teams or domains. ENGINEERING

e Predictive analytics: Forecast developer

bottlenecks before they escalate.

Al Powered Measurement Techniques

Embedding feedback loops via Al agents to track developer satisfaction (e.g., nudges,
micro-surveys).

RAG pipelines (Retrieval-Augmented Generation) help summarize platform telemetry and
adoption data.

NLP techniques to analyze developer tickets, platform docs, and Slack threads for friction
patterns.

Use reinforcement learning models to simulate policy impact on performance (e.g., golden

path optimization).

Al Driven SDLC

Al Driven SDLC

[O B B

Mm'oduc'em Architectural Coding Assistants | | Testing and QA Observability and Release Management
:g;:‘ Tools and Generators Toois Monitoring Tools Tools

Gen Al Tools

3

DevEx, DevOps & SRE

[Al Tools for Platform Engineering]

Figure 11.3 A high-level view of AI-driven SDLC that improves Developer
Experience through DevOps principles, making it easier to do Site Reliability

Engineering by applying platform engineering principles

A Metrics Matrix - DORA

Category Traditional Al-Augmented Signal How Al Adds Value
DevOps Metric

Delivery Lead Time for Predicted Lead Time (based on PR size, | Predict delays before they happen

Performance | Changes sentiment, workload history) using time-series forecasting
Deployment Adaptive Deployment Cadence Adjusted based oninferred team
Frequency stress, test coverage, and feature

risk
Reliability Change Failure Contextual CFR by Domain, Developer | Cluster-based breakdowns,

Rate

Persona, Time of Day

pattern detectionin test/log
failures

MTTR (Mean
Timeto
Recovery)

RCA Latency, Alert-to-Action Time,
MTTR Forecasting

LLM-assisted RCA and root cause
suggestions via incident
summaries

A Metrics Matrix - Other Leading & Lagging

Category Traditional DevOps Al-Augmented Signal How Al Adds Value
Metric

Quality Bug Count, Test Coverage | Anomaly Detection in Test Flakiness, Predictive Al flags brittle test patterns or bug-prone code
Defect Hotspots viaembeddings

Developer PR Cycle Time, Commit Friction Index (based on review churn, rework, NLP on PR comments + ticket threads +

Productivity Volume sentiment) velocity metrics

Developer Survey-based NPS or Real-time DevEx Score (via agent prompts, workflow Embedded micro-surveys + telemetry

Experience satisfaction scores lag, behavioral patterns) inference using GenAl agents

Operational Ticket Volume / SLA Task Automation Rate, Al Intervention Effectiveness % of tasks handled autonomously; learning

Efficiency loops from past interventions

Observability

Alert Count, SLO
Violations

Narrative-based Alert Summaries, Failure Pattern
Clustering, Predictive Incident Models

Reduce noise, surface actionable signals with
GenAl summarization

Security Vulnerability Scan Results | Contextual Risk Score + Auto-Remediation LLM-assisted interpretation of security
Suggestions findings
Cost Governance | Monthly Cloud Spend Real-time Cost Efficiency Score by Team/Service Al-driven recommendations to optimize cost
Reports per deploy/unit/test

CoPilot Adoption is suboptimal

The business ca
GitHub Copilot

How to measure downstrt
impacts?

The Al-Native Engineering

M D

https://www.youtube.com/watch?v=Wuxuy5Ua_Ag

How to improve developer

experience through Generative Al

GenAl for Frictionless DevEXx

GenAl copilots offer personalized guidance across onboarding, CI/CD config, and
environment setup.

Inline code explanation and remediation (via IDE-integrated LLMs) reduce cognitive
load.

Natural language interfaces to developer portals and documentation make platforms
more discoverable.

Context-aware recommendations based on team/project history.

Platform Embedding and GenAl Fusion

Use LLMs + vector embeddings to build semantic search across platform services and
infra policies.

Automate environment provisioning using prompts (e.g., “Create a staging env with
Kafka + Redis”).

Intelligent platform feedback: Al agents suggest faster workflows based on past
usage patterns.

Developer telemetry + LLM summarization = on-demand insights into developer pain

points

Example: Pulumi CoPilot

ulumi Copilot

Intelligent Cloud Management

https://www.youtube.com/watch?v=m4kb2k_chyM

Example: Robusta RCA

Timeline | Robusta x o+ v
beta.platform.robusta 23/graphs? = ALERT_NAME"&focus="5a6a53d6-3e1f-4836-a526-8d7 4d"&shi oy @ D O @ ¢ & NewChrome available
« | KubeContaine.. Oct 28 15 | » Wsilence View App Details X
o Integrate AlertManager to see alerts in Robusta; cluster: natan-openshift Suggested Fix X
@ Event RootCause * Instructions 0
Cluster ~ | Namespace v 1 preset ~ Q earch [E] (O Last week EE] Qe
&)
AppName ~ || EventName ~ | Clear KubeContainerWaiting) source Prometheus
2 Started: Oct 28, 2024 17:33:45
11, Timeline (@ (&](Z])(e] » Groupby Alert ~ | A2 Trend Analysis
Cluster natan-test2 / Namespace default Kind Name I bapp
n0e oo =0 o o Subject customer-relations-webapp-5d98ffcfd-tdSgz A
> pod I bapp-5d98ffcfd-1dsgz in default on container crw-main-container has
3 been in waiting state for longer than 1 hour. Pod is not ready due to ImagePullBackoff ImagePullBackOff: Back-off pulling
" " M image "yourcompany/crw:latest’
. > Pod Events
b RolloutStuck L] |
Kubedot
KubeMemoryOvercommit > Alert Labels
magePullBackoff (4 oo s000000000e00 $0000000 0000000000
hy POBDIIDBOODDDDD S HIE0ELILIELLIILILLUND OB B S @ .
fLifocycleWan .
NodeHealthWarning (9 1000000000000 2000000460000 o0 200 44 400 .
Failure (4 + < e . .o * W .
2024Nov04 2024Nov0S 2024Nov06 2024Nov07 2024Nov08 2024Nov09 2024 Nov10
-
/ Event Stream EE) Export CSV &,
s Cluster Events ¢ Latest Latest event
natan-test2 View164ew Nov 10,242 Pod analytics-exporter-fast-8cf8c9446.

shLoopBack... natan-openshift nat.. [VieW222Wll Nov10,242. Crashing pod db-certs-authenticator-7...

RO kT

https://home.robusta.dev/

How is Generative Al improving the

observability space?

Al-Enhanced Observability Patterns

GenAl summarization reduces alert fatigue by transforming logs/traces into
actionable narratives.

Detecting unseen failure patterns via LLM-powered anomaly detection and log
clustering.

Root cause analysis (RCA) through prompt-based investigation: “Why did checkout
fail at 3AM?”

Auto generated incident reports via RAG workflows trained on runbooks + prior

incidents.

Impact on Observability Tools

5 ol Anomaly Detection & Root Cause Analysis '4"‘
el o Hnatrace
- 7
v
splunk Predictive Analytics & Proactive Remediation CmTE Y
.
¥ moogscft Automated Incident Response & Resolution @ BigPanda
B ctastic Security Observablility & Threat Datection DARKTRACE
g N
A sentry Automated Log Analysis and insights Shumio

Figure 11.7 A classification of some of the most popular observability tools in the

industry today and how they fare against each of the five axes of comparisons we
identified.

Closing the Loop with Al in Observability

Event correlation: LLM agents group related alerts across systems and suggest

resolutions.

LLMs offer plain-language dashboards, lowering observability complexity for

non-experts.
Prometheus/Grafana integrations with chat-based GenAl assistants for deeper

queries.
Continuous training from production data to evolve observability agents’ accuracy

over time.

RAG with prompting

Response
‘- P EQ Context /./O\.\
rom onlex!
o /- B0 /= UM
<2 =% o &
Prompt ~0~—

Retrieval System

E
. e
i (888
Sources: Repository, Ontologies, Catalogs,
Guideknes...

Figure 11.4 A simple view of how Retrieval Augmented Generation works within a
prompting process

Automating Software Operations using
Resolve.ai

Introducing

% Resolve.ai

https://www.youtube.com/watch?v=bwd2Vy14KNI

Agents to do what you need in PE Space

KUBIYA.AI

https://www.youtube.com/watch?v=sIgI5Owgeik

What is Agentic Al and how does it

impact platform engineering?

A Notional Architecture

@ Developer Zone @

' Required by
Platform Zone @) J

DevPortal

Observability Orchestration Cl/CD Cloud Infra

t Improves
Al Zone
Agentic MCP RAG

g
N

‘ Requires

Data Zone @i)

Repo JIRA Docs

Defining Agentic Al in Platform Context

Agentic Al = autonomous systems that perceive, reason, and act with a goal-oriented

approach.

Unlike static GenAl, agentic systems evolve workflows (e.g., tune Cl pipelines, suggest
infra shifts).
Examples in platform engineering: infra remediation bots, proactive security

hardening agents.

Builds on RLHF (Reinforcement Learning with Human Feedback) to improve decision

quality over time.

Impact on Platform Engineering Operating
Model

Platform teams shift from scripting tools to designing agent ecosystems.

Facilitates intent-based interfaces: e.g., “Optimize cost for this app while maintaining SLOs.”
Encourages composability: Agents caninteract (DevEx agent «— Cost Optimizer agent).

Supports “Platform as a Brain” vision—autonomous agents that evolve platforms without manual

config.

Agentic Al with Engineering Platform

Use Case

With Engineering Platform

With EP + Agentic Al

Fixing Production Issues

e Resources provisioned with platform
capabilities manually

e Logs, metrics and incident workflows
available from the platform

e Agents proactively detect,
diagnose, and resolve issues

e Fixesareapplied, tested and
deployed autonomously

Pipeline Optimization

e Standard pipelines reduce variability
e Manualinterventions are needed for test
optimizations and rollbacks

e Dynamically optimize test
execution, deployment strategies
and auto-trigger rollbacks

Observability & Incident
Response

e Correlateslogs, metrics and traces
automatically
e Manual analysis and actions needed

e Predictive anomaly detection
prevents incidents before they
occur

e Agentsautonomously remediate
issues and alerts

Cost & Governance Automation

e Costreportsand compliance policies are
generated from pipelines

e Remediation requires additional
manual/automated approaches

e Continuously optimizes resource
allocation in realtime

e Security policies are
autonomously enforced

Agentic Al to help create PRD

e Wewilluse atool called chatprd.ai for demonstration purposes

) ChatPRD protuct Reviews Pridng Resowces -~ Company T - |

http://chatprd.ai

Agentic Al to help create PRD

Step #1: Initial Prompt

22

& Personaiaccount v

(New!

Upgrade for $5 / month

Upgrade Now

Today

PRD for PR Review Agent Crea.

®:

Share

H

Help me create a PRD for an agent that will do a PR Review

Absolutely, Ajay! Creating a PRD for an automated agent that conducts PR (pull request) reviews sounds like a strong step toward improving developer
productivity and code quality on Platformetrics.

Before | get started, a couple of clarifying questions will help make the document laser-focused and actionable

Target Users: Who is the main audience for this agent? (e.g., internal Platformetrics engineers, open-source contributors, 3rd-party partners, etc.)

Review Scope: Are you envisioning a purely code-style/linting review, or should the agent give architectural suggestions, catch regressions, enforce
security patterns, etc.?

Integration Point: Which platforms or tools should this work with? (e.g., GitHub, GitLab, Bitbucket, custom git workflows?)

Agent Behavior: Should the agent auto-approve, just comment, block merges, or escalate issues?

“MVP" vs. Ambitious: Are you looking to ship a slimmed-down “first version” quickly or expect broader capabilities in the first release?

If you give me your quick thoughts (even rought), Il build a tailored PRD draft that fits your real needs and roadmap.

How do you see your team and product benefiting most from this agent? Any “must-haves” or red lines you want in (or out)?

ChatPRD: PRD

Agentic Al to help create PRD

Step # 2: Refine with specifics

D +Project / PRD for PR Review Agent Creation 445 of 3000 words used Share

W

If you give me your quick thoughts (even rough!), I'i build a tailored PRD draft that fits your real needs and roadmap.

How do you see your team and product benefiting most from this agent? Any “must-haves" or red lines you want in (or out)?

Target Users: Internal developers of my team who are building this agent for potential external users Scope: Provide architectural suggestions, and security
challenges Integration: It should work with Github Behavior: Yes, auto-approve but show the flow correctly Want to create an MVP Version.

@ Perfect, thanks for the detail, Ajay! Here's a summary of your direction for the MVP PR Review Agent

Upgrade for $5 / month

Target users: Your internal devs first (with sights on external customers eventually)
Upgrade Now

Scope: Focused on ar & security (not just simple linting)
Integration: Must work with GitHub (PRs)

Behavior: Can pprove, but of a is important

Release: Start lean—minimum viable product

Here's how | suggest we structure the PRD for clarity and momentum. Does this match your expectations before | dive into the draft?
PRD for PR Review Agent Crea.

Outline Proposal:

TL;DR: Short summary of problem/solution

Goals: Business/user goals, non-goals (for focus)

w N

User Stories: Developer workflow from both the dev building it and hypothetical external user

4 i Key gration, code parsing, review feedback, pproval logic,

User Experience: End-to-end journey from PR creation to review to approval/notification

Narrative: Example scenario showing user value

Success Metrics: Adoption, speed, security, etc

)

TechnicalIntegration: Github API, code analysis layers, etc

9. Mil & Team: Lean

Give me a thumbs up (or suggest tweaks) and Il draft the full PRD in your template!

ChatPRD: PRD

Ajay
_J Be

Agentic Al to help create PRD

Step # 3: Generate the PRD

;,) [+Project / PRD for PR Review Agent Creation 0 Openin v Share [}l
Personal account v
< Behavior: Can pprove, but y of isions is important ? © Open in Editor

New!

You have used 1 of 3 free chat
© —
Upgrade for $5 / month

Upgrade Now

Today

PRD for PR Review Agent Crea.

Ajay
Free Trial

Release: Start lean—minimum viable product

Here's how | suggest we structure the PRD for clarity and momentum. Does this match your expectations before | dive into the draft?

Outline Proposal:

3

TL;DR: Short summary of problem/solution

Goal

usiness/user goals, non-goals (for focus)

3. User Stories: Developer workflow from both the dev building it and hypothetical external user

4 i i Key fi hub , code parsing, review feedback, pproval logic,

User Experience: End-to-end journey from PR creation to review to approval/notification

Narrative: Example scenario showing user value

Success Metrics: Adoption, speed, security, etc

Technical/integration: Github API, code analysis layers, etc.

9. Mi & Team: Lean team, ulel

Give me a thumbs up (or suggest tweaks) and I'l draft the full PRD in your template!

Please draftafull PRD >~

MVP PR Review Agent for GitHub (Internal Release) Edit >

Your full PRD for the MVP PR Review Agent for GitHub is ready! It's structured around your priorities—internal developer users, architectural
and security review, MVP scope, and a lean team. The document covers goals, user stories, requirements, UX, a narrative, metrics, technical
considerations, and a realistic path to launch.

You can access and review the document in your doc switcher at the top of this chat (titled: "MVP PR Review Agent for GitHub (Internal
Release)*)

Want any tweaks, or ready to move on to outlining specific acceptance criteria or engineering tickets from this?

ChatPRD: PRD

MVP PR Review Agent for GitHub
(Internal Release)

TL;DR

Platformetrics is building an MVP agent for internal use that automatically
reviews GitHub pull requests for architectural alignment and security issues.
The agent minimizes manual reviewer workload, accelerates delivery, and lays
the groundwork for a productized solution for external stakeholders.
Transparent, automated feedback improves PR quality from the start.

Goals

Business Goals
Accelerate development cycles by reducing bottlenecks related to manual
PR review.
Improve overall code quality and security posture in the codebase.

Validate the value and technical feasibility for possible external
commercialization.

Lay the foundation for showcasing “developer operations” automation
capability to potential customers.

Identify and document technical and process learnings to inform broader
agent-based initiatives.

User Goals
Receive prompt, actionable, and reliable feedback on architectural and
security issues within PRs
Minimize friction and waiting time during PR review.

Increase developer trust in code review automation by exposing agent
decisions and reasoning.

Maintain a clear and auditable record of agent actions for confidence and
learning.

simplify PR approval flows (auto-approve with evident traceability for
manual confirmation)

(]

https://docs.google.com/document/d/10MQsu3riPfcB9CutHa0qT4IpGD_vCoWu/edit

| Transformation Summary Tools

Personal

Q Search + New

Al Transformation Summary N

Date Filte Team
[Thu Year x] [Favml\l X]

< Al Transformation Summary Dashboard | ©* Al Transformation Cohort Dashboard

We recommends using the SMART metrics for managing Al adoption.

improvement (for example Velocity)

o Specific: target a particular area fc
;. PR Merge Rate)

« Measurable: quantify progress with a meaningful metric (e.g

» Achievable: Ensure metric is useful for top-down-driven influence and bottom-up

o Realistic: targets for metric that can be achiev

collaboration (e.g. impact on delivery of key initiative

given constraints (e.g. leveraging historical PR Merge Rate data)

ful (e.g. augmenting an entire team)

« Timely: improvement are visible & trends are mea
activities, impact on velocity and sentiment for

The summary below leverages data from VCS, developer surveys and system metrics to measure adoption, quantify time savings, monitor augmen

Al Assistance in your organization

Summary of Impact

What is the current RO| of using Al Assistance in my organization? What is the room for improvement to an ideal state where all developers in my organization are actively leveraging Al Assistance

Usage Time Savings (Survey Data) Equivalent Economic Benefit

3,056 hours $25M
v .

50 developers
v

Goal 10000 hours 0O

Goal 200developers — O
“Q * [=] D Ld

https://www.youtube.com/watch?v=LDLeFk591TE

Keys to adoption

fane () Ha
_ e Alignto Developer Value Streams
gﬂﬁ o Notrandom bots - align to build/deploy/troubleshoot/test flows

@) Optimize for flow not features

g o Focus onseamlessness: IDE/Dev Portals embedded agents > dashboards
&~8& Make agents collaborative not controlling
{ @ { . .
K& o Agentspropose, humans validate — human-in-the-loop.

Observability and guardrails by default
% o LLM Observability, Trust Layers (Citations, RAG telemetry)

¢ Measure business impact, not model metrics
! o MTTR, Deployment Frequency, Dev Satisfaction - not just LLM accuracy.

Effective Platform Engineering

o Effective Platform Engineering book by Manning
e MEAP currently out awaiting print version soon

https://livebook.manning.com/

More Information

https://effectiveplatformengineering.com/

Effective Platform Engineering

Ajay Cl Nic C Bryan Oliver Sean Alvarez

Doe Doe HDoe OO

“Effective Platform Engineering" is a ive guide that i platform engineering as a discipline, focusing on creating
developer platforms that enhance tea eficency and srearmine appication deployment. The book provldes practical insights into
designing and managing platforms that bridge the gap between asks the
software development lifecycle. Readers will learn to build internal developer p\aﬁorms and portals, ensurlng seamless adoption and
satisfaction among teams. The authors emphasize the importance of secure, scalable Kubernetes-based engineering platforms and
offer strategles for mplementing efective Service Level Objectives to boost trust and adaption. Additonally the book explores

cutting-edge Al tools to enh per p providing readers with the knowledge to leverage
the latest advancements in code generation.
Through practical examples and real-world scenarios, *Effective Platform Engineering" how platform engineering differs

from traditional DevOps and the unique value it brings to organizations. The book delves into both patterns and anti-patterns of
platform development, guiding readers in designing and deploying secure, scalable, and observable engineering platforms. With the
inclusion of diagrams, code samples, and exercises, readers can visualize key concepts and solidify their understanding. This resource
is tailored for DevOp: familiar with cloud and i de, aiming to equip them with
the skills to establish platforms that reduce workloads, improve consistency, and accelerate software delivery.

Discover how platform engineering is onizing the developer experience and ional efficiency. Learn more

