Effective Platform
Engineering In Action

A practical journey through the essential components of a
modern engineering platform, culminating in real-world
automation and self-service capabilities.

Recap - Video # 1: Platform Engineering Fundamentals

e Challenges and past trends that led to today’s Platform Engineering
e Evolving PE in organizations

e Platform Engineering: Career Paths and Growth Opportunities

e Makingitall stick

e The current and future trends in Platform Engineering

e How this book will help you?

Recap - Video # 2: Technical Platform Product
Management

e Why Platform Engineering Needs Product Management
e Driving business outcomes with product practices
e The platform value model

e Scaling engineering platform adoption

Recap - Video # 3: Compliance at the Point of Change

e Introduce complianceearlyinthe SDLC

e Enforce policies using automation to detect and resolve issues before

deployment

e Embed checks into dev tools and CI/CD pipelines to prevent

non-compliance proactively and improve developer experience

e Compliance validation should be continuous, not static gates

N/ N/
0’0 0‘0

4

4

)

NS

)

N/
0’0

What We’'ll Cover

Goals of an Engineering Platform
Development practices for the platform
Embedding observability

Developing and deploying the control plane

Components to extend the engineering
platform for self-service

What are the goals of an Engineering
Platform?

What do we want to fix?

% Network Team

Developers can make a &
Dev? few small changes directly bg Security Team
| §
infrastructure bg Procurement Team
requests | 5
e ”"A Databage Team
W
4 v
DevOps makes
the change, except
or unless... -
Create Change Request Q -
QA? ticket with QA Team w A
Production? . Ope Team

QA reviews first
seperate operaﬁons team owns the

producﬁon environments, using
DevOps team code where they can

Removing the friction with Platform Engineering

Software
Applications

Builds, Releases, Creates, Owns,
Hosts and Maintains

@& . Creates, Owns, ! Publishes to and
'- and Maintains @(Uses

Team A9em

Where does an engineering platform fit?

Experience for DevEx require > PLATFORM ENGINEERING supports > SRE
Developers

interacting

with Tools,
Frameworks,
Process
through SDLC

Applying
Software
Engineering
Principles to

sa|qeus

Operations for

creating highly
DevOps reliable
production

systems

A cultural paradigm that
improves collaboration and

communication between all
aspects of SDLC

Notional View of Platform Engineering

Platform Product Management
Team Topologies, Technical Product Management,
Value Modeling

Developer Plane
Version Control, Infrastructure as Code , Dev Tools, Paved Road

Compliance & Governance Plane
Pipelines, Lightweight governance, FinOps compliance, Compliance @ POC

Delivery & Runtime Plane
Containers, Kubernetes, Workflow orchestration

Networking & Connectivity Plane
VPC, External, 3rd party

Security Plane

IAM, Secret and Encryption Management, SIEM

Observability
System level, Integrations, Alerting

Developing your platform as a composable
software product

. Prioritize what comes next
e a O r l l l and the acceptance criteria of

successful delivery.

8. Continuously assess the impact to
overall operational health and the quality of Operate Design
predictive monitoring.

2. Decide the architecture
and implementation.

7. Carefully observe the developer and end-

user experience impacted by the change, 3. Write the automated tests that confirm code
,

crtically assessing both the uger experience Obsgerve Code correctness and resiliency and that the

and the operational respongiveness. aceeptance criteria are met, then write the code.

6. Releage the change to platform customer
getop 4. Incorporate the code and the testsinto a

Releage CI/CD pipeline that orchestrates all actual
change in a fixed path to production.

environments. First, to a preview
environment not in the customer path to
production, then to all non-production
environments, finally to production.

5. Through the pipeline, thoroughly test in
production-like environments outside of
the platform uger envronments.

Composable Capability Design

Platform capabilities are needed to leverage
opportunities

i

Capability

Platform

Treating development teams as customers
provides scale for innovation.

Capability

Platform Capability
Teams

Experience
Teams

Platform Composable

Developer

Design >/ “E

Organizing your code by platform domain T

@ Customer ldentity Provider

Organizing our code by platform domain ® Dlatform Product Servces
sets up for scale from the beginning S ‘l

] Cloud Control Plane Base

(6]) (7]
Control Plane Services Control Plane E xtengions

— p— —_ —

-~ - -

© Transit Network layer

l

o Cloud Account Baseline

0 Maesd A dinkslobonilse lrlanitis

Let’s look at a real example!

https://bit.ly/3GYXdFz

Embedding observability for the platform
and its users

Should Observability be an External Platform?

Platform Product Management
Team Topologies, Technical Product Management,
Value Modeling

Developer Plane
Version Control, Infrastructure as Code , Dev Tools, Paved Road

Compliance & Governance Plane
Pipelines, Lightweight governance, FinOps compliance, Compliance @ POC

Delivery & Runtime Plane
Containers, Kubernetes, Workflow orchestration

Networking & Connectivity Plane
VPC, External, 3rd party

Security Plane
IAM, Secret and Encryption Management, SIEM

Observability
System level, Integrations, Alerting

Observability-Driven Development (ODD)

Observability Driven Development 2L e
(ODD) is a technique for building systems Application ™.
and software by shifting left observability '
concerns to the earliest parts of :
development.

Instrumentation

Embed Observability Throughout

Developer Plane
Version Control, Infrastructure as Code , Dev Tools, Paved Road

Compliance & Governance Plane
Pipelines, Lightweight governance, FinOps compliance, Compliance @ POC

Delivery & Runtime Plane
Containers, Kubernetes, Workflow orchestration

Networking & Connectivity Plane
VPC, External, 3rd party

=
c
()
=
()
{@))
 @©
c C
[T
€=
-3
[+
o
g S5
Sao
‘_,—'C
o829
3>
()
o
£92
g ==
Lt/)
o.0
-— o
® O
a O
*g
|_
£
S
|_

Observability
System level, Integrations, Alerting

Security Plane
IAM, Secret and Encryption Management, SIEM

What should we be observing?

4, Ensure issues

Jun Juty Aug

Wun @i mAug

il ll .

EP QCbserv. Service

Portiolio

Manager

Product

Owners

1. Ensure 2. Ensure applications are 3. Ensure applications are
usage and consumption are performing as expected and not available to serve requests are being addressed within
within limits throwing errors acceptable times
Infrastructure Application Service Health Incidents
oughp System Uptime P1 & P2 Incidents
Engineering e ; 100
P g e
1 a —
o S——
CPU% Memory % Disk Time Jun Jud Aug
3 Engineering Incident
‘Operauons Teams ‘SRE Response
5. Ensure delivery 6. Ensure that . 7. Ensure that 8. Ensure that initiatives are
teams are performing as platform services are being cloud services are being leading to expected business
expected used by teams and returning used responsibly by teams results
expected value
Portfolio Platform Cloud Business Ops
Business Late vs On-Time Delvery Platform Adoption Cost by Account Satisfaction / Attrition

0t Q2 02 Q4

‘Finanoe

‘Executives

Architecture of an Observability Platform

Metrics are typically on block storage disks, Logs in Key-value or blob storage, and
Traces in distributed storage systems with efficient indexing for fast lookup

Storage
‘olume

&3

T Key-Value
Log
Storage

Persistent
Volume
Claim

@
? Prometheus
|

(Metrics)

Cassandra
Cluster
A

~

Loki
(Logs)

Data Storage
> Service

Data Ingestion

Service

Message Busfid I I I >

External data
collection is queued
before ingestion for

DB Connection

Tempo
(Traces)

Storage of dashboards
and settings must be

fault-tolerant across
multiple instances

I
N\

Manager -
Postgres
Database
Grafana .
(Dashboards/Alerts)
Data Query
Endpoint

fault tolerance

External Data
Collection Agent

3

Users cl/cD

Let’s see how we can
deploy!

http://bit.ly/40riFd2

Developing and deploying the control plane

Notional View of Platform Engineering

Platform Product Management
Team Topologies, Technical Product Management,
Value Modeling

Developer Plane
Version Control, Infrastructure as Code , Dev Tools, Paved Road

Compliance & Governance Plane
Pipelines, Lightweight governance, FinOps compliance, Compliance @ POC

Delivery & Runtime Plane
Containers, Kubernetes, Workflow orchestration

Networking & Connectivity Plane
VPC, External, 3rd party

Security Plane
IAM, Secret and Encryption Management, SIEM

Observability
System level, Integrations, Alerting

Managing Control Plane
Dependencies

There may be dependencies
early in development, but
independent deployments can
be enabled quickly

—

€V\a&'c\/\ﬁixr‘lv\7 QLC&?OV\M ?m&ucf

Cloud Administrative [dentity

+ awg-iam-profiles

—

Cloud Account Baseline

+ awe-platform-obgervability-bage
- awe-platform-hosted-zones

Transit Network Layer

+ awe-platform-vpe

Cloud ldentity Provider

* platform-authO-management

Cloud Services Control Plane

+ awe-control-plane-bage

Managed Control Plane Services

+ awg-control-plane-gervices

Managed Control-Plane-Extengions

+ awe-control-plane-extengione

+ veetl

Platform Product Services

Environments We Need

Sandbox Account Non-production Account Production Account

4 git push T e dev 7 qa

[7 ol . —
$gittag-alO.3-m'release’ +— } 00000 g1 preview nonprod prod —>| management

Let’s look at the code!
http://bit.ly/AdmFmEJ

http://bit.ly/4dmFmEJ

Extending the platform to enable
self-service for users

The Goal: Paved Paths

Not all applications are the same, but with consistent architectural patterns and
deployment practices, a paved path can be provided to make getting code to production
easy fromday 1

Deploy to Ensure best Extend and Diverge from the
production right > practices and customize » paved road in part
away compliance deployments or whole

29

Platform Product Management
Team Topologies, Technical Product Management,
Value Modeling

Notional View of Platform Engineering

Developer Plane
Version Control, Infrastructure as Code , Dev Tools, Paved Road

Compliance & Governance Plane
Pipelines, Lightweight governance, FinOps compliance, Compliance @ POC

Delivery & Runtime Plane
Containers, Kubernetes, Workflow orchestration

Networking & Connectivity Plane
VPC, External, 3rd party

Security Plane

IAM, Secret and Encryption Management, SIEM

Observability
System level, Integrations, Alerting

What Extensions Are Needed?

As usual,
it depends!!

services

extengions

- obgervability collectors

- vertical autoscalers

- external service integrations
- policy and security seanning

Collect, analyze, and return or forward data
about the state and activities of the cluster
or applications running on the cluster.

May provision or configure other resources
ingide or outside the cluster, but ONLY
where such resources can be effectively
fully abstracted from the platform user
experience.

+ gtorage class
+ infrastructure operator
- service mesh

Extend the Kubernetes AP by enabling
platform users to provision and configure
aresource, whether ingide or outside of
the cluster, that is not part of the
Kuberneteg APl definition.

Enabling a Service Mesh

app deployment

Default @ @
Traffic Y |

app deployment

Traffic with .
Service Megh @&O @

N
v \®
mJect / /

gervice megh

controller

Let’s look at the code!
https://bit.ly/4]XXSpb

https://bit.ly/4jXXSpb

Effective Platform Engineering

o Effective Platform Engineering book by Manning
e MEAP currently out awaiting print version soon

https://livebook.manning.com/

Next Video - Impact of GenAl and LLMs in Platform
Engineering

Measuring improvements in platform engineering through Al
methodologies

How to improve developer experience through Generative Al
How is Generative Al improving the observability space?

What is Agentic Al and how does it impact platform engineering?

More Information

https://effectiveplatformengineering.com/

Effective Platform Engineering

Ajay Cl Nic C Bryan Oliver Sean Alvarez

Doe Doe HDoe OO

“Effective Platform Engineering" is a ive guide that i platform engineering as a discipline, focusing on creating
developer platforms that enhance tea eficency and srearmine appication deployment. The book provldes practical insights into
designing and managing platforms that bridge the gap between asks the
software development lifecycle. Readers will learn to build internal developer p\aﬁorms and portals, ensurlng seamless adoption and
satisfaction among teams. The authors emphasize the importance of secure, scalable Kubernetes-based engineering platforms and
offer strategles for mplementing efective Service Level Objectives to boost trust and adaption. Additonally the book explores

cutting-edge Al tools to enh per p providing readers with the knowledge to leverage
the latest advancements in code generation.
Through practical examples and real-world scenarios, *Effective Platform Engineering" how platform engineering differs

from traditional DevOps and the unique value it brings to organizations. The book delves into both patterns and anti-patterns of
platform development, guiding readers in designing and deploying secure, scalable, and observable engineering platforms. With the
inclusion of diagrams, code samples, and exercises, readers can visualize key concepts and solidify their understanding. This resource
is tailored for DevOp: familiar with cloud and i de, aiming to equip them with
the skills to establish platforms that reduce workloads, improve consistency, and accelerate software delivery.

Discover how platform engineering is onizing the developer experience and ional efficiency. Learn more

